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0 Course synopsis

0.1 Overview

Viscous fluids are important in so many facets of everyday life that everyone has some intuition about the diverse
flow phenomena that occur in practice. This course is distinctive in that it shows how quite advanced mathematical
ideas such as asymptotics and partial differential equation theory can be used to analyse the underlying differential
equations and hence give scientific understanding about flows of practical importance, such as air flow round wings,
oil flow in a journal bearing and the flow of a large raindrop on a windscreen.

0.2 Reading list

[1] D.J. Acheson, Elementary Fluid Dynamics (Oxford University Press, 1990), chapters 2, 6, 7, 8. ISBN
0198596790.
[2] H. Ockendon & J.R. Ockendon, Viscous Flow (Cambridge Texts in Applied Mathematics, 1995). ISBN
0521458811.

0.3 Further reading

[3] G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000). ISBN 0521663962.
[4] C.C. Lin & L.A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences (Society for
Industrial and Applied Mathematics, 1998). ISBN 0898712297.

[5] L.A. Segel, Mathematics Applied to Continuum Mechanics (Society for Industrial and Applied Mathematics,
2007). ISBN 08987162009.

0.4 Synopsis (20 lectures)

Euler’s identity and Reynolds’ transport theorem. The continuity equation and incompressibility condition.
Cauchy’s stress theorem and properties of the stress tensor. Cauchy’s momentum equation. The incompress-
ible Navier-Stokes equations. Vorticity. Energy. Exact solutions for unidirectional flows; Couette flow, Poiseuille
flow, Rayleigh layer, Stokes layer. Dimensional analysis, Reynolds number. Derivation of equations for high and
low Reynolds number flows.

Thermal boundary layer on a semi-infinite flat plate. Derivation of Prandtl’s boundary-layer equations and sim-
ilarity solutions for flow past a semi-infinite flat plate. Discussion of separation and application to the theory of
flight.

Slow flow past a circular cylinder and a sphere. Non-uniformity of the two dimensional approximation; Os-
een’s equation. Lubrication theory: bearings, squeeze films, thin films; Hele-Shaw cell and the Saffman-Taylor
instability.



1 The Navier-Stokes equations

1.1 Motivation for studying viscous fluids

e Fluid mechanics is the study of the flow of liquids and gases.

e In many practical situations the fluid can be described effectively as incompressible and inviscid, and mod-
elled by the Euler equations

V-u=0, (1)

p (‘z‘t‘ +(u- V)u) = —Vp+ gF, (2)

where the velocity u and pressure p are functions of position x and time ¢, p is the constant density and F
is the external body force acting per unit mass (e.g. gravity).

e For example:

(i) aerodynamic flows (e.g. flow past wings);

(ii) free surface flows (e.g. water waves).
e However, there are many fluid flow phenomena where inviscid theory fails, e.g.

(i) D’Alembert’s paradox states that there is no drag on an object moving steadily through a fluid (¢f. a
ball bearing falling through oil).
(ii) The ability of a thin layer of fluid to support a large pressure, e.g. a lubricated bearing.

(iii) You can’t clean dust from a car by driving fast. Inviscid flow allows slip between car and air:

>
>
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The tenacious dust suggests that fluid adjacent to the car is dragged along with it:
: /
| > 1
|
I
|

The problem with inviscid fluid mechanics which gives rise to these failings, is that it takes no account of
the friction caused by one layer of fluid sliding over another or over a solid object.

This friction is related to the stickiness, or viscosity, of real fluids.

No fluid is completely inviscid (except liquid helium below around 1 Kelvin).

Even for low-viscosity fluids ( e.g. air), there will often be regions (e.g. thin boundary layer on a moving
car) where viscous effects are important.



1.2

In this course we will see how the Euler equations f must be modified to obtain the incompressible
Navier-Stokes equations

V.u=0, (3)
ou

p <8t + (u-V)u) = —Vp+ uV?u + pF, (4)

for flows in which the viscosity p is important.
The incompressible Navier-Stokes equations - are nonlinear and in general extremely difficult to solve.
We will use a combination of asymptotics and partial differential equation theory to analyse f and
hence give scientific understanding about flows of practical importance.
The summation convention and revision of vector calculus
We will work in Cartesian coordinates Oxyz and let

i=(1,0,0)=e, j=(0, 1,0) =€z, k=1(0, 0, 1) = es,
denote the standard orthonormal basis vectors, so that a position vector may be written

X = T1€1 + T2€2 + T3€3,

where (z1, 2, x3) are the Cartesian coordinates.
We employ the summation convention of summing over all possible repeated indices in an expression.
An index which is summed in this way is called a dummy index.

The summation convention should only be used if it is clear from the context over what ranges the dummy
indices should be summed.

Ezample 1: Denote by (u, v, w) = (u1, ug, us) the components of the fluid velocity, so that

3
u=(u, v, w) =ui+vj+wk = g uie; = u;e;.
i=1

Ezample 2: Kronecker’s delta d;; is defined by
s 1 ifi=j,
Y0 ifd £,

while the Levi-Civita symbol €51 is defined by

1 if4, 4, k in cyclic order,
cijk =€; - (ej Ney) =< —1 if i, j, k in acyclic order,
0  otherwise

The alternating tensor e;;y:
€123 = €231 = €312 = +1
€132 = €213 = €321 = —1

In the identity
EijkErsk = 5ir5js - 5is(5jra

the sum is over k =1, 2, 3.



e Example 3: The determinant of a matrix A = {a;j}3x3 is given by
a1l a2 ais
det(A) = | a21 a2 a3 | = €ijka1:02;a3%.
as] a2 ass

o FExzample 4: The scalar and vector product of two vectors a = a;e; and b = b;e; are given by

a-b = aib; + asbs +asbs = a;b;,

€] ey e3
aAb =|a ay a3z |= eijkeiajbk.
b1 by b3

e Ezample 5: For a differentiable scalar field f(x) and a differentiable vector field G(x) = G;(x)e;,

__of _0G, . 0Gy
Vf—ezaxi, V- -G= dz,’ V/\G—Ewkez—amj,
_of 90,  Of
(w-V)f =w ox;’ V= OTmOTm
0 Gy,
Note: VANG = eijkeia—ijk = Gijkez‘ﬁj
e Example 6: Since €5, = €; - (ej Ney) ,
0G|},
VANG = (ez . (e] A ek))eZE)Tj
e;Ne G,
— e Aep—F
J (9%‘]'
0
— e] A T%(erk)
_ e 96
- J 6xj '

e Example 7 The identities of vector calculus may be readily derived using these definitions and vector
identities. F.g. for a differentiable vector field u,

Using Ezxample 6:

0 Ju 0

0? B 0 Oug
= M(ei A (ej Au)) = qjkeifTTj kaqaixp

0? B 82uq
= m((ez -u)e; — (e; - ej)u) = ekijekpqeim

o2 82uq

0 (0Ouy 0%u e 0%u; e 0%u;

~ o <3fﬂz> - Ox;0z; "Oxjdr; " Ow;0;
= V(V-u)-Vu =V(V-u) - Vu



e Ezample 8 (The divergence theorem) Let the region V in R? be bounded by a piecewise smooth surface
OV with outward pointing unit normal n = nje;. Let G(x) = G(x)e; be a differentiable vector field on V.

/ G-ndsz// V. Gdv or/ Gjnjdsz///wjdv.
ov |4 ov Va%‘j

e Ezample 9: The incompressible Navier-Stokes equations (3)-(4) may be written in the form

%—i—uaui B _8p . 9%u;
P T Y0x;) T 0w Mow;0u;

Then

uj _
8xj_

1.3 Kinematics
1.3.1 The continuum hypothesis

e Liquids and gases consist of atoms or molecules, which move around and interact with each other and with
obstacles.

e At a macroscopic level, the net result of all these random interactions is that the fluid appears to be a
continuous medium, or continuum.

e The continuum hypothesis is the assumption that the fluid can be characterized by properties (e.g. density
p, velocity u, pressure p, absolute temperature T') which depend continuously on position x and time ¢
(rather than having to keep track of a large number of individual atoms or molecules).

e The hypothesis holds for the vast majority of practically important flows, but can break down in extreme
conditions ( e.g. very low density).

1.3.2 Eulerian and Lagrangian coordinates

e We distinguish two spatial coordinate systems, as follows.

Eulerian Coordinates x = (x1,x2,x3)
— Label points fixed in space.
— Fluid properties at each point x change as different fluid particles pass through that point, e.g. u(x, t)
is fluid velocity at point x at time ¢.
— The Eulerian time derivative ( i.e. holding x fixed) is denoted by

0 0

o= il
Lagrangian Coordinates X = (X1, X2, X3)
— Label fluid particles and in this sense they “move with the fluid.”

— Fluid properties are described for each fluid particle as it moves through different points in space.
— The convective or material or Lagrangian time derivative ( i.e. holding X fixed) is denoted by

D 0

Dt~ Ot|x

e We choose the label X to be the initial position of a fluid particle at time ¢ = 0, and denote by x(X, t) its
position at time ¢ > 0, i.e.

x(X, 0) =x, ;‘XX(X, t) =u(x(X, t), t)

so that {x(X, ¢):¢ > 0} is the pathline of the fluid particle at X at ¢t = 0.



e The convective derivative D/Dt is related to the Eulerian time derivative 9/0t using the chain rule. For a
differentiable scalar field f(x, t),

Df 9

Dt oty
Of aibl
dzy Ot
of 0x

AR

_f
= 5+(U'V)f

0
= |mZ+u-V|/f
(i+uv)s
e The convective derivative may be written in the form

D0 2,000 00
Dt ot ot Ox Oy dz Ot

fx(X, 1), 1)

Of 9zz| -, Of Iz
X 81'2 ot X 83:3 ot

of

Vf

X

and applied to vector quantities, e.g. the acceleration of a fluid particle is

e Both Eulerian and Langrangian coordinates can be useful when describing fluid motion:

Eulerian coordinates = working in a fixed laboratory frame
= convenient for calculations;
Langrangian coordinates = working in the frame-of-reference of a moving fluid particle
= covenient for the application of conservation principles

(e.g. mass, momentum, energy).

1.3.3 The Jacobian and Euler’s identity

e The continuum hypothesis implies that there is a one-to-one relation between X and x(X, t) , i.e. fluid can

never appear from nowhere or disappear.
e We assume in addition that the map from X to x(X, ¢) is continuous, so that the Jacobian

83?1 8951 81‘1
00X, 0Xy 0X3

N 8(951,:52,:03) o 8.732 8x2 8.732
TR = 5. X0 Xs) — | 0%, X, 09X,
8$3 8953 8:::5

0X, 0Xy 0Xj3
is positive and bounded.

e The Jacobian J(X, t) measures the change in a small volume compared with its initial volume, i.e.
dxldxgdazg = J(X, t)XmdXQng,

with J(X, 0) = 1 because x(X, 0) = X by definition.



e The Jacobian may be written in the form (using the summation convention here and hereafter)

8$1 89:2 8:c3

T 1) =eingx ox, ox,

where g;j, is the Levi-Civita symbol.

e Hence, the rate of change of the Jacobian J following the fluid is given by

DJ D 3331 8.%‘2 81‘3
B = (ox 0% %)
N y 0 D.%'l 8332 6333 8:(:1 0 DZCQ 81'3 axl 81'2 0 Dl’g
= Cuk <6XZ» < Dt > 09X, 0X, | 0X,0X, < Dt ) 09X, T 09X, 0X, 0X; < Dt >>
. y 6U1 8:6'2 81}3 8x1 8u2 81’3 8901 81’2 8’11,3
= ik <8XZ» 09X, 0X, | 0X,0X,0X), | 0X; X, an>
o ouyp 0xy, Oxo Oxs 0x1 Oug Ox,, O3 0x1 Oxg Ousg Oz,
Figk <8xm X, 0X; 0X; | 0X, dam 0X; 0X), | 0X; 0X; 0 axk>
ouy O(xm, T2, T3) Oug O(x1, Ty, T3) Ous O(x1, T2, Tm)
ﬁxm 0(X1,X2,X3) Oxm 8(X1,X2,X3) 01’m 8(X1,X2,X3)

. 8u1 8U2 8U3 8(.%'1,$2,{B3)
o 8:1@1 6.%2 81'3 8(X1,X27X3)’

where in the second line we used the fact ¢;;; is constant and the product rule; in the third line we used the

definition
Da?l

Dt

in the fourth line we used the chain rule to write
Oup  Ouy Oxp,
X, Orm,0X,’

= Uj;

and in the sixth line we used the fact a determinant is zero if it has repeated rows.

e We have therefore derived Euler’s identity
—=JV. u (5)

1.3.4 Reynolds’ transport theorem

e Consider a material volume V (t) which is transported along by the fluid and bounded by the surface OV ()
with outward unit normal n.

Pathline:

Dx
t
D = wx1)

ov(0)

e Let f(x, t) be any continuously differentiable property of the fluid, e.g. density, kinetic energy per unit
volume. The total amount of f inside V(¢) is given by the volume integral

= // f(x, t) deidxadas.
V(t)

e Transforming from Eulerian coordinates x to Langrangian coordinates X, the integral becomes

/ / Fx(X, 1), H)J(X, t) dX1dX2dXs.
v (0)



e We can now “differentiate under the integral sign” to find that the time rate of change of I(¢) is given by

S / (XA
_ / / / = (F)AXdXad X,
_ /// <J+f> dX1dX>d X
_ / / / <+fV u) JAX1dXed X
_ /// <+v (fu)> dz1dzadas,

where on the fourth line we used Euler’s identity (ref5) and on the last line we set

D 0 0
F{+fv af{+(u~V)f+fV-u—af{+V (fu)

while transforming back to Eulerian coordinates.

e Thus, we have proven Reynolds’ transport theorem: If V() is a material volume convected with velocity
u(x, t) and f(x, t) is a continuously differentiable function, then

i [l 2 = Iy e o

i) frodt Jrar ™+,
— x,t)dV = — 4+ V- (fu)dV = —dV + u-n dsS
dt Jy ) fx1) V() 9t (fw v O oV (t Lﬂ

D ) flux of f through
fo{-l-fV-u the boundary

Note:

1.3.5 Visualization of Reynolds’ transport theorem

e Let 0t be a small time increment, then

M-t _ 1 ( / / /V AR / / [, 760 dV)
_ / / /V . f <X’t+‘5§i_f &) gy 4 % / / /V B F(x, H)dV

Change inside V() Change due to moving boundary

e The volume V (¢t +0t)\V (¢) is a thin shell around 9V (¢) . The amount of f swept through a surface element
35S of OV (t) in the time increment 6t is f(u - ndt)dsS:

AV (t + 6t)

f x parcel volume = f (u-ndt)sS



e Hence, as ot — 0,

(t+6t ///V(t dv+//av fu-ndS.

e Finally, apply the divergence theorem

//8V(t)fu‘ndS:///V(t)V'(fu)dV

to recover Reynolds’ transport theorem @

1.3.6 Conservation of mass

e Since a material volume V (t) always consists of the same fluid particles, its mass must be preserved, i.e.

Wl
— pdV = 0.

e Apply Reynolds’ transport theorem (6) with f = p to obtain

I 29 o

e Since the volume V' (t) is arbitrary, the integrand must be zero (assuming it is continuous), i.e.
op
—+V. =0. 7
PV () @
Dp
Or: — V-u=0 7
r o TPV u= (7)

e This equation is called the continuity equation and represents pointwise conservation of mass.

e Note that an application of Reynolds’ transport theorem (6) with f = pF implies that

i///v(t) AV ///V(t) gt(pF)—i—V-(pFu)dV
e o o)

=0 DF
- Dt

which yields the following useful corollary

8] o= 1]

for continuously differentiable p and F.

Note that Eqn may be derived directly as follows:

d d DF DF
— F(x,t) pdV = — F(x(X,1),1) podVo = — podVp = — pdV
dt Jv ) dt Jy o) e v Dt v Dt

pav =poaVvo

mass conservation
initial configuration
subscript 0

e For incompressible fluid, Dp/Dt = 0, and hence by (7) or (7’) we obtain the incompressibility condition
V.ou=0. 9)



1.4 Dynamics
1.4.1 The stress vector

e Consider a surface element §.5 with unit normal n drawn through x in the fluid:

n = ejnj

e The stress vector t(x,¢,n) is the force per unit area (i.e. stress) exerted on the surface element by the fluid
toward which n points.

e Ezample: Fluid flows inside a rectangular box R = {x : 0 < z; < j for j = 1,2,3} whose boundary OR is
rigid and solid. The force per unit area exerted by the fluid at a point x = xz1e; + z2e2 on the bottom face
x3 = 01is t(r1e1 + z2e2, t, n = e3), so the total force exerted by the fluid on the bottom face is given by

2 1
/ / t(xlel + xoe9, t, eg)dxlde.
0 0

1.4.2 Conservation of momentum

e Consider a material volume V' (t) with boundary 0V (¢) whose outward unit normal is n:

n

OV (1)

e Its linear momentum is / / / pudV.
V(t)

e Forces acting on V(¢) :

(i) Internal forces represented by the stress t(x, t, n) exerted by the fluid outside V' (¢) on the fluid inside
V(t) via the boundary OV (t) .

(ii) External forces (e.g. gravity, EM) represented by a body force F(x, t) acting per unit mass.

e Newton’s second law for the material volume V' (t) states that the time rate of change of its linear momentum
is equal to the net force applied. Thus,

d/// pudV:// tdS~|—/// PRV, (10)
dt V(t) V(1) V(b)



Example: Derivation of Euler’s momentum equation

e For an inviscid fluid the stress vector
t = —pn,

where p is the pressure.

e Note the implications:

(i) stress is purely in the normal direction (i.e. no friction);

(ii) the magnitude of the stress (i.e. p) is independent of the orientation of the surface element (i.e. of n).

e For viscous fluid neither of these is correct: we must allow for stress which is not necessarily in the normal
direction, and whose magnitude depends on n.

e Note that the corollary to Reynolds’ transport theorem implies that

i = [
< udV = Uy,
dt V(t) P V(t) P Dt

while the divergence theorem implies that

// tdS = // —pndS = —€; // péijnde = —€; // i(péu)dV = /// *Vpd‘/.
oV (t) oV (t) ov (1) v(e) 0z; V()

e Hence, by ,
Du
p— + Vp— pFdV = 0;
///V(t) Dt

since V(t) is arbitrary, the integrand must be zero (assuming it is continuous), and we recover Euler’s
equation

Du
—=-V F.
th p+p

e In order to generalize this methodology to any continuous medium (and, in particular, a viscous fluid), it is

/ / tds
AV (t)

into a volume integral. This is accomplished via Cauchy’s stress theorem, which recasts the stress vector in
a form amenable to the divergence theorem.

necessary to convert the surface integral

1.4.3 The stress tensor

e The stress tensor o;;(x, t) is the component of the stress in the z;-direction exerted on a surface element
with normal in the z; direction by the fluid toward which e; points.

e Note that the subscript ¢ corrsponds to the direction of the stress, while the subscript j corresponds to the
direction of the normal. Moreover, by definition,

O-’ij(x7 t) =€ 't(X, L, ej) s

SO
t(X, t, ej) = eiaij(x, t) .

e Example 1: Fluid flows in the upper half-space x3 > 0 above a rigid solid plate at 3 = 0. The force per
unit area exerted by the fluid on the plate at a point x = x1e; + xse9 is given by

t(xlel + z0e9, t, N = 83) = eiaig(aclel + x9€2, If) ;

013 and o093 are shear stresses, while o33 is a normal stress.

10



e Erample 2: Since t = —pn for an inviscid fluid,
oij(x, t) =e;-t(x, t, ej) =e€;- (—p(x, t)e;) = —p(x, t) 0ij,
where d;; is Kronecker’s delta.

1.4.4 Action and reaction

e Consider a material volume V' (¢) having at time ¢ the configuration of a right circular cylinder, with radius
R, height eR, centre x and outward unit normals as shown.

aVi(t)

e Newton’s second law for the material volume (10) may be written in the form

/// oo~V = [[ s
V(t) oV (t)

e Assuming the integrand is continuous (so that, in particular, the acceleration and body force are finite), the
integral mean value theorem implies that

/// p——deV O(R?) as R — 0.

e Moreover, as e, R — 0,

3
// t(x, t, n)dS = Z/ Xj, t, nj)dS
x€AV (¢) j=1 7 /x;€0V;(1)

= t(x, t, n;)7R? 4+ t(x, t, ny)mR* + O(¢R?, R?).
e Combining these expressions gives
(t(x, t, m) +t(x, t, no))R?* = O(cR?, R ase, R— 0.
e Since this expression pertains for arbitrarily small ¢ and R, we deduce (setting n = n; = —ny)
t(x, t, —n) = —t(x, ¢, n), (11)

which is Newton’s third law (action-reaction) for a continuous medium.

11



1.4.5 Cauchy’s stress theorem

e Consider a material volume V(¢) having at time ¢ the configuration of a small tetrahedron as shown. Let
the slanting face have area A = L? and outward unit normal n = ejn;j, with n; > 0.

€3

€1

e Newton’s second law for the material volume (10)

p— — pFdV = // tdS
///V(t Dt 0

e Assuming the integrand is continuous, the integral mean value theorem implies that

/// p— —deV:O(LS) as L — 0.
v Dt

e Since the face with area A; = njA = n;L? (by Q1(b)) has outward unit normal —e; and the slanted face
with area A = L? has outward unit normal n,

// tdS = (t(x, t, n) +t(x, t, —e;)n;)L* + O(L*) as L — 0.
AV (t)

e Combining these expressions and using Newton’s third law (11) gives

(t(x, t, n) —t(x, t, e;)n;)L* = O(L?) as L — 0.

e This expression pertains for arbitrarily small L, so there is a local equilibrium of the surface stresses, with

t(x, t, n) =t(x, t, ej)n;.

e Note that this expression holds for an arbitrarily oriented unit normal n by a straightforward generalization
of the above argument.

e Finally, since t(x, t, e;) = e;04;(x, t) by definition, we deduce Cauchy’s stress theorem
t(n) = eiaijnj (12)
where we have suppressed the dependence of t and o;; on x and ¢.

e Thus, knowing the nine quantities 0;; we can compute the stress in any direction.

12



1.4.6 Cauchy’s momentum equation

We return to the conservation of momentum of a material volume ([10J).

Recall that the corollary to Reynolds’ transport theorem implies that

8 - I,

Using Cauchy’s Stress theorem (12), the net surface force is

// dS—ez// oijn;dS = /// 993 gy
o) (1) 9%;

after an application of the divergence theorem.

Combining these expressions we find that may be written in the form

8UU B
[l B e v o

Since V/(t) is arbitrary, the integrand must be zero (if it is continuous), and we deduce Cauchy’s momentum
equation

Du adij
— —e;
th ' al'j

which holds for any continuum, not just a fluid.

+ gF, (13)

1.4.7 Symmetry of the stress tensor

For a material volume V' (¢) , conservation of angular momentum about the origin O is given by

/// x A pudV = //(9V(t)X/\tdS+///V(t)X/\deV (14)

Applying Reynolds’ transport theorem and the divergence theorem to this expression gives

///v(t)X/\< (Z)"”— )dv /// o)  eicryydV.

We can then deduce from Cauchy’s momentum equation (13) that

/// e; A\ eiaijdV =0.
V(t)

Since V/(t) is arbitrary, the integrand must be zero (if it is continuous), i.e.

0= e; \eo;; = e1(0’32 - 0’23) + e2(0’13 - 0’31) + 93(021 - 012) )
which implies that the stress tensor is symmetric, i.e.
Uij = in.

The stress tensor may also be shown to be symmetric by taking V' (¢) to be instantaneously a vanishingly
small cube in and estimating the various terms as in the derivations of Newton’s third law and
Cauchy’s stress theorem ([12)).

Note that the symmetry of the stress tensor o;; implies that it consists of six independent quantities only,
namely 011, 092, 033, 012 = 021, 013 = 031 and 023 = 032.

13



Alternative notes for sections 1.4.1-1.4.7

1.4.1 The stress vector

Within a fluid, take a plane with unit normal vector n. Let t(x,¢,n)
denote the stress (force per unit area) that the fluid toward which
n points, exerts on the plane at location x and time ¢. The vector t
is called the stress (or traction) vector.

1.4.2 - 1.4.7 Balance Laws and the Stress vector

We distinguish between two types of forces: body forces and sur-
face forces (tractions).

Body forces: These act at each point within the fluid (continuum)
and are due to some external cause e.g. gravity. Let F be the
body force per unit mass. Then the total body force on a fluid Figure 1: The stress or traction vector

(continuum) occupying a volume V() at time ¢ is t(n) is the force per unit area that the
fluid (material) in (I) exerts on the fluid
/ FpadVv. (material) in (2).
V(t)

The total moment of the body forces about the origin is

/ x AF pdV,
V(t)

where x is the position vector of a material point in time ¢ relative to the origin O.

Surface forces: These act across a surface and may respresent a traction (load) applied on an outer boundary,
or may act across an internal surface e.g. fluid pressure. Let t denote the force vector per unit area (stress
vector) acting on the surface OV (¢) of the fluid (continuum) at time ¢. The total surface force on 9V (t) is

/ £dS
v (t)

and the total moment of the surface forces about the origin is

/ xAtdS.
oV (1)

For a fluid (continuum) in motion, the forces and their moments must equal the rate of change of linear and
angular momentum respectively.
The linear momentum balance law:

4 updV = / deV+/ tdS (10)
dt Jy ) V(t) oV (t)

or (using Reynold’s Transport Theorem or arguing directly by transforming to the original configuration)

D
updV:/ dev+/ t ds. (107)
v Dt V(t) av (1)

The angular momentum balance law:

x/\updV—/

x/\deV+/ xAtdS (14)
V(t)

dt V(t) AV (t)



or equivalently

D
/ x/\updV:/ x/\deV+/ xAtdS, (14)
V(t) Dt V() oV (¢)
ing that 2 (x Au) = X au 4xn Y
using that - (x A u) = e N XA 55
. Dx
=0 since — =u
Dt

The Cauchy Stress Principle:

Consider an infinitesimal tetrahedron. The outward unit
normal vectors wrt the faces of the tetrahedron are T3

—er, —€2, —es, n, e3
with corresponding areas being

051, 052, 4853, 4S.

By the divergence theorem n
0= / ndS = —615S1 — 925S2 — 93553 + nés. 55
ov > L9
[ Divergence theorem: For a constant vector a, V-a = 0 and €2
thus
Oz/V'adV:/ a~ndS:a-/ nds.
\%4 ov oV e
1 T
a is arbitrary — ndS=0 ]

ov
Figure 2: Infinitesimal tetrahedron.

Taking the dot product with e; :  §5; = (n-€;)dS = n;dS
The tractions on the faces of the tetrahedron are
t(_el)7 t(_GQ)a t(_e3)7 t(n)7 respeCtiVGIY7

the dependence on x and ¢ being omitted. The linear momentum balance law can be written as

Du
tdS:/ (F)pdV.
/av v \ Dt

Since the tetrahedron is infinitesimal, quantities may be regarded as constants to a leading order approxi-
mation. Thus

t(—e1)551 + t(—eg>552 + t(—83)553 + t(n)5S = (ll_));l — F) ,O(5V
or
(51

t(n) = —t(—e1)n1 — t(—ex)ns — t(—es)ng + (D“ F) pe

Dt
Since 0V/0S — 0 as 0V — 0, then in the limit we have

t(n) = —t(—e;)n;

15



But t(e;) = —t(—e;), which follows from Newton’s Third Law or formally by taking n = e; so that
t(e;) = —t(—e;)d;; = —t(—e;). We thus obtain

The Cauchy Stress Principle:

t(n) = t(ej)n;

or in components (scalar form)
ti(n) =ti(e;j)n;.

Definition: The Cauchy Stress tensor is defined by
oij = ti(e;)

so that
t = €0 or ti = 0iNy. (12)

Notes:

e t and n are vectors, the Quotient Rule for tensors = (0;;) is CT2 (Cartesian Tensor of rank 2).

e 0;; is the i—component of the traction on a surface element with normal in the e; direction.
(0i5) = | taler) | ta(e2) | ta(es)

e The diagonal components 011,022,033 are called the normal stresses and o0;;,¢ # j are the shear stresses.

Example: On a plane element with normal e; the stress compo-
nents are t;(e;) = ;1. e

By the divergence theorem we have that 021 oi1 = ti(e1)

/ tdS = ei/ Uijnj dsS = ei/ 60_” dv
v (t) v (t) V() 9%;

and thus the linear momentum balance law (10”) becomes

Jo;; Du
F +e,—2 ) dVv = 0.
/V(t) <p Ox Lj th

Since V is arbitray and the integrand is continuous we may deduce

—— 011

e
031 1

€3

) .
Cauchy’s momentum equation Figure 3: Plane element with normal e;
Du (90”
"Dt = % ou;

+ pF. (13)

Similarly for the angular momentum balance law (14’), we have using the divergence theorem that

/ XAtdS = (ek VAN ez)/ TN dS = (ek A ez)/ M dV = (ek A ei) O - Oij + kaaw dv
av (1) v (1) vy O v 9%, Jz; dz;

—5@

00y
= (ej Nej)oij +x N ej—2dV
/V(t) ’ ’ O



and hence (14) becomes

Du 80”-
XA | p—=——¢€; —pF)dV:/ e; Nejo;dV.
/V(t) < Dt D v !

=0 using (13)

Again as V is arbitrary and the integrand continuous we deduce that
e; \Nejo;; = 0 or €kji€kTij = 0.

Hence
ei(093 — 032) + €a(013 — 031) + €3(012 —021) =0

from which it follows that o;; = 0j; and the Cauchy stress tensor is symmetric. Alternatively,

€kji0ij = 0 = €kpq€kjiTij = 0 = (6pi5qj — 6pj5qi)0'ij =0 = Opq — Ogp = 0.



1.4.8 Change of coordinate system

Suppose we rotate the coordinate system from Ozjzexs with orthonormal basis vectors {ei, ez, es3} to
Ox ha’, with orthonormal basis vectors {e}, €, €5}.

A position vector r may be written r = z;e; = xe/, so the rotation of the coordinate system transforms the

coordinates of the vector r according to

zp =1 e = (z;€;) € = l;jx;, (15)
where [;; = €] - ej.
Equally, we can write r = x;e; = m;-e;- and deduce that the inverse transformation is given by

r,=r-e = (2€) e =ljx (16)

/.
JTi Jr

Combining and gives

x; = lyxl = ljljpoe = dipr,
where §;;, is Kronecker’s delta.
Since the last expression holds for arbitrary xj, we deduce that
Liiljk = ik,
i.e. the matrix L = {l;;}3x3 is orthogonal, with
LLT=1=10L"L,
where I = {0;;}3x3 is the 3-by-3 identity matrix.

By definition the stress tensor in the primed frame is

Writing Cauchy’s stress theorem ([12)) in the original frame in the form

t(n) = €;0iNn; = eiaij(n . ej) y
we deduce that under the rotation of the coordinate system due to the orthogonal matrix L = {l;;}3x3, the
stress tensor transforms according to
ors = € - (eioij(e} - €))) = Lyilsjoij, (17)
or equivalently

S = LSLT,

where

S ={0)}3x3, S = {04 }3x3,

That o;; transforms according to means that it is a second-rank temsor, which are a generalization of
vector fields or first-rank tensors, cf. and .

It is for this reason that o;; is called the stress tensor and the upshot of the above analysis is that there is
an invariantly defined stress in the fluid.

Note that o;; is a second-rank tensor if and only if Cauchy’s stress theorem is independent of the choice of
of coordinate system, i.e. holds iff

t'(n') = e o7 ny,

where t' = tl.e], n' = nje}, with ¢ = l,;t;, n, = l5;n;.
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1.5 Newtonian constitutive law
1.5.1 Recap

e We have derived for a continuous medium expressions (7) and (13) representing conservation of mass and
momentum, viz.
Du 80’ij
— — e,

P Dt ! a$]’

0
L1V (pu) =0,

F.
ot T

e The number of scalar equations (143 = 4) is less than the number of unknowns (p, u, 0;; = 0j;, i.e. 1+3+6 =
10) , so we need more information to close the system.

1.5.2 Constitutive relations

e To make progress we must decide how the stress tensor o;; depends on the pressure p and velocity u.

This is called a constitutive relation and cannot be deduced, relying instead on some assumptions about the
physical properties of the material under consideration.

For example, we would expect the constitutive relation for a solid to be quite different from that for a fluid.

e Examples of simple constitutive relations:

(i) Hooke’s law for the extension of a spring;
(ii) Fourier’s law for the flux of heat energy down the temperature gradient;
(iii) the inviscid stress tensor o;; = —pd;;.

Note that

(i) a “thought-experiment” suggests these laws are reasonable;

(ii) they could be confirmed experimentally;

(iii) they will almost certainly fail under “extreme” conditions.

Example: Heat conduction in a stationary isotropic continuous medium

e Let T'(x, t) be the absolute temperature in a stationary isotropic continuous medium (e.g. a fluid or a rigid
solid at rest), with constant density p and specific heat ¢,.

e Let q(x, t) be the heat flux vector, so that q - n is the rate of transport of heat energy per unit area across
a surface element in the direction of its unit normal n.

e For a fixed region V in the medium with boundary 9V whose outward unit normal is n, conservation of

heat energy is given by
d
/// chTdV:// q- (—n) dS,
dt J.JJv av

where the term on the left-hand side (LHS) is the rate of increase of internal heat energy and the term on
the right-hand side (RHS) is the rate of heat conduction into V' across oV'.

e Differentiating under the integral sign on the LHS and applying the divergence theorem on the RHS gives

///v <Pcv%€+v-q>dvzo,

e Since V is arbitrary, the integrand must be zero (if it is continuous), i.e.

oT
pch—i—V-q:O.
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A closed model for heat conduction is obtained by prescribing a constitutive law relating the heat flux vector
q to the temperature 7.

Fourier’s Law states that heat energy is transported down the temperature gradient, with
q=—kVT,
where k is the constant thermal conductivity.

Hence, T satisfies the heat or diffusion equation

o _,
a =kV 1—17

where the thermal diffusivity k = k/pc,.
The SI units of the dependent variables and dimensional parameters are summarized in the following table;

note that kelvin K is the SI unit of temperature, joule J is the SI derived unit of energy (1J = 1Nm) and
the newton N is the SI derived unit of force (IN = 1Kgms™!) .

Quantity Symbol | ST units
Temperature T K

Heat flux vector q Jm—2s7!
Density P Kgm™3
Specific heat Cy JKg= k!
Thermal conductivity | & Jm~ls7IK!
Thermal diffusivity K m2s!

1.5.3 The Couette flow rheometer

A layer of viscous fluid of height h is sheared between two parallel plates by moving the top plate horizontally
with speed U.

The force required to maintain the motion of the top plate is proportional to U and inversely proportional
h.

Thus, the shear stress exerted by the top plate on the fluid must satisfy

U
g 12‘ y=h X E
The liquid flows parallel to the plates, with a velocity profile that is linear in y.

These observations suggest a constitutive law of the form

ou
12 = My (18)

where p is a constant of proportionality that depends on the liquid only (in fact p is the dynamic viscosity).

18



1.5.4 The Newtonian constitutive law

e To generalize , we begin by writing
Oij = —ptsij + Tij, (19)

where —pd;; is the inviscid stress tensor and 7;; is the deviatoric stress tensor, due to the presence of viscosity.

e Experiments suggest that

(A) 75 is a linear function of the velocity gradients Juq/0xg;

(B) the relation between 7;; and the velocity gradients is isotropic, i.e. invariant to rotations of the coor-
dinate axes (so that there is no preferred direction).

e These conditions define a Newtonian fluid because they are sufficient to determine the form of 7;; completely:
together with symmetry of o;;, (A)—(B) imply that

Tij = )\(V . u)éij + 2,ueij, (20)
where A is the bulk viscosity, u is the dynamic (shear) viscosity and
1 8uz + 8Uj
P
" 2 &rj 8952

is the rate-of-strain tensor (which is zero for any rigid-body motion, i.e. if there is no deformation of fluid
elements).

e The expression is the constitutive law for a Newtonian fluid.

Outline Proof

e By property (A),

where A;;,4 are constants - 81 of them!
e Since 7;; and Ju,/Oxg are rank-2 tensors, tensor theory implies that A;jg is a rank-4 tensor.

e Property (B) means that Ajjeg is an isotropic tensor, i.e. if 7;; = A}, 50uq/0xj; under rotation of the

coordinate system due to the orthogonal matrix L = {l;;}3x3 in §1.4.8, then A;jaﬁ = Ajjas-

e Since A;jop is an isotropic rank-4 tensor, tensor theory implies that
Aijap = Nijbap + 11(0iadip + 0ip6ja) + 11 (6008 — 6ipbja) |
where p, pf and )\ are constants-just 3 of them!
e Since 7;; is symmetric, A;jog = Ajing, Which implies pf =0, and hence that

ou
Tij = AijaﬁaTcZ = Aeaadij + 2puei;.

e Finally, note that eqq = Qug/0x, =V - u.
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Summary:
Macroscale: Sliding one plate over another

o1 ox o
12 h

Assume that this applies at the microscale to layers of fluid sliding over one another

oo o Tim W Ty —uly) _ Ou
12 oy—0 5y 8y

We could define the hydrodynamic pressure p to be
1

P =30k = —5(011 + 022 + 033),
so that 7, = 0. As such gives
0= (3/\ + 2N)€kk
and hence the bulk viscosity A = —%u. The constitutive law for a Newtonian fluid is thus

Oij = —péij + 2#(61']' — %6%5”)

Definition: The scalar parameter p is called the dynamic viscosity of the fluid. It is the proportionality
factor between the rate of shear and the tangential force per unit area when plane layers of fluid slide over
each other.

Typical values of p for some common fluids are given in Batchelor and Acheson. It charasterises resistance
to shear and has dimensions of [stress x time] = MLT2L~2T = ML~ !T~! and units of kg/ms = Pa s
(Pascal second, 1Pa= 1Nm~2). It can vary with temperature, pressure and density, but will be assumed
constant.

1.5.5 Incompressibility assumption
e Except where stated we will assume that the density p is constant, so that
— the flow is incompressible;
— the continuity equation (7) is replaced by the incompressibility condition (9);

— the Newtonian constitutive law (20) becomes

Tij = 2/L6ij =l (8% + aqj) s (21)

so that the bulk viscosity A drops out of the model.

e Note that

— most liquids are virtually incompressible except at extremely high pressures;

— most gases are compressible, but the effects of compressibility are negligible at speeds well below the
sound speed.

e In general, the viscosity 4 may depend on the state variables, e.g. p, u, p or T, but we will take it to be
constant.
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1.6 The Navier-Stokes equations
e For an incompressible Newtonian viscous fluid and give

871,@‘ + ou j
ij 8901 .

Oij = —poij + (

e We calculate

Oaij N i _ 5.4_1_ 8U1 +8u]'
8.1]' - a%j p” H 8.7}j 8%1

@ n 82ui n 82uj
8952- #8.%]'82123' Mawja%'i

. Op 9 0 (Ou;
- _8952- +MV Ul—{_'uaxi <8.%'J
_ Op 9 0
= s, +uV uz+uami(V-u)
_ _Oop 2
= T ow + puV=ou,
since for an incompressible fluid,
V- -u=0. (22)

e Hence, we have derived from Cauchy’s momentum equation (13| the incompressible Navier-Stokes equation

D
D—ltl = —Vp+uV*u+ pF. (23)

Remarks

(i) Note that the incompressible Navier-Stokes equations — consist of four scalar equations, which is the
same as the number of unknowns (u1, w2, us, p).

(ii) In Cartesian coordinates Oxzaxs,
0 9 0?
= U i, = y
J al‘j 8l‘j (‘3:1:j

SO — are given in component form by

%—0 %_Fwaui __8p+ 0%,
al‘j - p ot ]856]' N a:L‘Z N(‘):cjaxj

u-Vv

+pF (i=1,2,3).

In other coordinate systems ( e.g. cylindrical and spherical polar coordinates) the basis vectors themselves
depend on the coordinates. To calculate the components of the momentum equation in the direction of the
basis vectors, use the identities 1
(u-V)u = (VAu)Au+V <2|qu> ,

Viu = V(V-u) - VA(V AU

to write the momentum equation in the form

0 1
v Au+V £+f|u]2 =-vVAw+F,
ot p 2

where w = V Au is the vorticity and v = p/p is the kinematic viscosity; then use the usual expressions for V
and VA in the relevant coordinate system (e.g. see Acheson Appendices A.6 and A.7 for the Navier-Stokes
equations in cylindrical and spherical polar coordinates).

21



(iii) The force exerted by the fluid on a solid boundary S with unit normal n pointing into the fluid is given by

//St(n) ds.

For an incompressible Newtonian fluid the stress vector t(n) may be written in the form
tn) =—pn+ p2(n-V)u+nA(V Au),

which quantifies the remarks made in the example in §1.4. Care must be taken to evaluate the term (n-V)u
for coordinate systems that are not Cartesian. In this course we will work almost exclusively in Cartesian
coordinates.

(iv) The Navier-Stokes equations (i.e. (22)—(23) with > 0) are of higher order than the Euler equations (i.e.
f with g = 0) by virtue of the “diffusive” viscous term pV?u, so it is necessary to impose more
boundary conditions for a viscous fluid than for an inviscid fluid.

1.7 Boundary conditions
1.7.1 Boundary conditions at a rigid impermeable boundary

e Suppose the fluid is in contact with a rigid impermeable surface S that has unit normal n pointing out of
the fluid and velocity U.

e Since fluid cannot flow though the impermeable surface, we prescribe the no-flux condition that
u-n=U-nonS,

so that the normal velocity components of the fluid and boundary are equal.

e For a viscous fluid, we also impose the no-slip condition
u—(u-nn=U—-(U-n)non S,

so that the tangential velocity components of the fluid and boundary are equal.

e Hence, the combined no-flux and no-slip boundary conditions are given by
u="Uon S,
so that the velocities of the fluid and boundary are equal.

e Note that we have prescribed a total of three scalar boundary conditions.

Fluid velocity u

Boundary velocity U
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1.7.2 Boundary conditions at a free surface

e Suppose the fluid has a free boundary I' that has unit normal n pointing out of the fluid and outward normal
velocity V', the free boundary separating the fluid from a vacuum and being unknown a priori.

e Assuming there is no evaporation, we prescribe the no-flux condition that
u-n=Vonl,
so that the normal velocity components of the fluid and free boundary are equal.
e Instead of the no-slip condition, we prescribe in the absence of surface tension the no-stress condition that
t(n)=0onT,
since the vacuum exerts no surface traction on the fluid.

e Note that we have prescribed a total of four scalar boundary conditions, one more than for a rigid imper-
meable boundary because we need to prescribe an additional equation to determine the location of the free

boundary.
n Vacuum
F/—K_/
Fluid velocity u
Remarks:

For a free surface y = f(x,t) the kinematic condition is
f(z,t) D (y = f(x,1)) =0
ony = f(z,t): —(y — f(x =
Yy ) Dt Yy ) )

representing that the fluid particles on the surface stay in the surface. Using the definition of the material

ony= f(x,1): %—Fu%zu, (A)

where u = ui + vj. We remark that this is equivalent to the no-flux condition

derivative, we obtain

ony=f(x,):  u-n=V, (B)

where V' is the outward normal velocity of the surface. This follows since the position vector for a location
on the surface is r = (z, f(x,t)) which gives the unit tangent and normal to the surface as

f: (17f$> _ <_f$71>
T+ )7 i+ 272
Consequently (A) can be written as
_ fi
R
where J fD) ;
r . . —Jx t
V= = R ) e = iy e

and thus (B) follows.
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1.8

Vorticity
Vorticity w = V A u is a measure of the local rotation of fluid elements.

Assuming the body force is conservative (so that VA F = 0) and taking curl of the momentum equation
, we obtain the vorticity transport equation

%:tj+(u-V)w— (w-V)u=rViw,

where the kinematic viscosity v = u/p.
The effect of viscosity is to diffuse vorticity.

In two-dimensions with velocity

u=u(z, y, )i+o(z, y, t)j,
the vorticity
w=VAu=uw(z, y, t)k,
where the z-component of vorticity is given by

_81} ou

w = .
or 0Oy
Hence, (w- V)u = wdu/0z = 0, and we obtain the two-dimensional vorticity transport equation

Dw  Ow ow Ow o
E—E—Fu%—i—va—yfuv Ww. (24)

For an inviscid fluid (v = 0) , the two-dimensional vorticity transport equation becomes

Dw

— =0.

Dt
Thus, if w = 0 at time ¢t = 0, then w = 0 for all ¢ > 0 (Cauchy-Lagrange Theorem).

Since V2w = 0 if w = 0, might expect that adding diffusion (v > 0) doesn’t change the argument. This is
incorrect because vorticity is generated at boundaries.

To see this, use the fact the flow is incompressible to write (24)) in the conservative form

ow
E—I—V'Q—O,

where the “vorticity flux” Q = wu — vVw; the two terms on the RHS of this expression correspond to
convective and diffusive transport of vorticity.

Consider a stationary rigid boundary S with unit normal n pointing out of the fluid. In general the no-slip
condition (u =0 on S) does not imply that Q -n =0 on S. In particular, the boundary acts as an effective
source (sink) of vorticity if Q -n <0 (Q -n > 0).

Remarks:
Compare to a convection-diffusion equation for concentration ¢ (or temperature) of the form

% +u-Ve= DV
which can be put in conservative form
Oc
.H = 1.8.1
D +V 0, (1.8.1)
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1.9

where

H = H onvection T Hdiffusion = c0 — DV,
and for incompressible flow V - (cu) = ¢V - u+u - Ve. Note that integrating (1.8.1) over a fixed volume V
=0
with unit outward normal n to its surface 0V gives
d d
E | cav = CdV:/ ~V-HdV =- | H-nds,
dt Jy v ot v ov

which is the conservation of the amount of ¢ in integral form. This illustrates an alternative approach to
section 1.3 in which we could consider arbitrary fixed volume V', the motion of the fluid then being taken
into account through a convective flux term. For example, for mass conservation with fixed V:

d

0
— pdV:/ pu-ndS:/p+V-(pu)dV:0.

Conservation of energy

We now consider the transport of energy by a conducting viscous fluid in the absence of external energy
sources (e.g. radiation, chemical reactions); ¢f. the heat conduction example in §1.5.2.

Consider a material volume V' (¢) whose boundary 0V (¢) has outward unit normal n.

The total internal energy in V (¢) due to heat and kinetic energy is

Eu>::/]]’ perT + Tplul2av,
V(t) 2

where ¢, is the specific heat and T'(x, t) the absolute temperature.
Conservation of energy states that the time rate of change of the total internal energy increases due to

(i) conduction of heat into V' (¢) through OV (t) , with net rate

/ﬁwﬂq«—mda

where the heat flux vector q = —kVT according to Fourier’s law, k being the thermal conductivity;

(ii) work done by surface stresses t(n) on OV (t) , with net rate

//av'(t) t(n) - uds;

(iii) work done by body forces in V (t) , with net rate

J[[ ¥ euav
V(t)

e Note that Fourier’s law may be written in the form

or

J

and that Cauchy’s stress theorem implies

t(n) -u = (eiaijnj) : (ekuk) = (5ikukaz-jnj = Ui0ijNj.
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e Hence, conservation of energy for the material volume V' (¢) may be written in the form

// (k: + ulalj> n;dS + /// pF -udV.
oV (t) Ox; V()

Using the corollary to Reynolds’ transport theorem (8) and the divergence theorem implies that

D 1, ,\ @ [ ar
— (T + = — Z (k= fwoy ) — pF - udV = 0.
///V(t)th(C +2]u|> 8xj(8xj+uaj> pF -udV =0

Since V() is arbitrary, the integrand must be zero (if it is continuous), i.e.

D 1, 8 [ ar
= (aT+ 5 = | kg T oy F - u.
th<c +2|u|> oz, <k8xj+ua]>+p u

e Assuming that ¢, and k are constants, and using Cauchy’s momentum equation gives

DT :
— kV2T + & o Ou

Cpy— =0ji—.
vat 5 Uzgaxj

Finally, substituting the constitutive law for an incompressible Newtonian fluid implies that the viscous

1 (0w O0uy\?
q"z“(axj+axi>

Hence, fluid deformation (= ® > 0) always increases the temperature.

dissipation is given by

1.10 Unidirectional flows

e There are hardly any explicit solutions of the Navier-Stokes equations. Almost all of them are for unidi-
rectional flows in which there is one flow direction only.

e Choose z-axis in direction of flow, i.e. set u = u(z, y, z, t)i

e Since )
u - V = u%’
* become
ou
oz =0
@—Fu@ = _@_’_ 62 +82 +82
P ot ox - or Y O a9 a 52
_ _Op
0 = @7
__Op
0 —5

e Hence, u is independent of z; p is independent of y and z. It follows that u = u(y, z, t) and p = (z, t)

ou (w0 _ Op
Por “H\82 T 022) T “or

satisfy

e LHS independent of z; RHS independent of y and z; hence LHS = RHS independent of z, y, z
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e Hence, the pressure gradient is a function of time ¢ only, say

op

I =G(t) ,

which must be prescribed to find u(y, z, t) .

e The z-component of velocity u(y, z, t) satisfies the two-dimensional diffusion equation

ou (a% . 02u> G (25)

o~ "oy T o2 ) T

the kinematic viscosity v = u/p being the diffusion coefficient and G(t) being the applied pressure gradient.

Remarks

(i) In unidirectional flows, all nonlinear terms in the Navier-Stokes equations vanish: the convective term

(u-V)u=0.

(ii) The remaining equation is linear and may be solved analytically using standard techniques in several
physically relevant geometries (which must be invariant to translations in the z-direction, as the flow is in
the z-direction).

(iii) In practical applications, the applied pressure gradient G(t) is zero, constant or oscillatory.
(iv) Further simplifications:

(a) in one-dimensional steady unidirectional flow with v = u(y) , reduces to the ordinary differential
equation
d?u G
dy?  p’
(b) in one-dimensional unsteady unidirectional flow with u = u(y, t) , reduces to the one-dimensional

diffusion equation
o Pu  G(t)

— =v
ot Oy? P
(c) in two-dimensional steady unidirectional flow with u = u(y, z), (25) reduces to Poisson’s equation

Pu  Pu G

a2 e T W

(v) The partial differential equations in (b) and (c) are amenable to standard methods e.g. separation of variables
and Fourier series methods, simularity reduction to an ordinary differential equation, integral transforms.

1.10.1 Example: Poiseuille/Couette flow in a channel

e Consider flow in a channel 0 < y < h:
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e Suppose lower plate at rest, upper plate moves to right with speed U and constant applied pressure gradient

0
P _a
ox
e Assuming one-dimensional steady unidirectional flow with velocity u = u(y)i, the Navier-Stokes equations
reduce to the ordinary differential equation
du
MdTJQ =G,

which represents a balance of viscous shear forces and the applied pressure gradient.

e The no-flux boundary conditions on the plates are satisfied automatically, while the no-slip boundary con-
ditions imply that «(0) =0, u(h) = U.

e Hence,

G U
u(y) = —@y(h —y)+ Ty

e Special cases:

(i) Poiseuille flow (U = 0) driven by pressure gradient G # 0 has a quadratic velocity profile:

N

G
| u(y) = —Q—Hy(h —9)

" y=nh

T 0
I 1 -
-Gh?
u=>0 U =
8p

(ii) Couette flow (G = 0) driven by moving plate has a linear velocity profile:

1.10.2 Example: Shear stress in a Couette flow

e Consider the Couette flow u = u(y)i, with u(y) = %:

e Flow occurs in layers y = H (constant).

e Fluid above y = H exerts a shear stress on fluid below y = H (and vice versa).
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The shear stress is given by
du wU
=pu—(H)=—

where the subscript 1 indicates the z-component of stress and the subscript 2 that the normal to y = H is

0'12(H)

in the y-direction.
This shear stress arises because fluid above y = H is moving at a different speed than fluid below.

Note that o12(H) > 0 for U > 0, as the fluid above y = H is moving faster than fluid below, i.e. viscosity
causes fluid above y = H to “drag along” fluid below (c¢f. inviscid fluid p = 0).

The shear stress exerted by the fluid on the lower plate is given by

U
o12(0) = MT;
by Newton’s third law, the shear stress exerted by the fluid on the upper plate is given by
U
—0 12(H ) = —%.

The force per unit area in the z-direction required to sustain the motion of the upper plate is

U
O‘12(H) = 'UJT > 0 for U > 0.
If we can measure o12(H) , U and h in our Couette flow rheometer, then we can calculate the viscosity p of

an incompressible Newtonian fluid.

1.10.3 Example: Flow down an inclined plane under gravity

Let the plane make an angle « to the horizontal.
Consider steady unidirectional 2-D flow: u = u(y)i = (u(y),0)

g = (gsina, —gcosa)

Figure 4: Flow down an inclined plane.

The continuity equation is automatically satisfied for this flow field and the components of the momentum
equation are:

2
i direction: 0= —gi + “Z;‘; + pgsina (10.1)
e Op
j direction: 0= —g,  PIcosa (10.2)
Y
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e Introduce

G= % — pgsin (10.3)

which from (10.1) is a constant and becomes

d*u G ,
— =G = =—y"+Ay+ B
a2 u(y) 20 y

for arbitrary constants A, B.
e The inclined plane y = 0 is assumed fixed, the no-slip condition gives

u(0) =0 = B =0.

e The upper surface y = h is assumed level and the stress balances the external (constant) air pressure pg:

Ony=h: t = —pun n=j=(0,1).
Using t; = oj;n; = 042 we have
Ony=h: 012=0, 099 = —pg.
H 5+ (24 4 94 ) it (v) 0
owever o;; = —pd;i with u1 = u Uy =
du
and r1 = x,x2 =y. Thus 019 = ,u,d—, 099 = —p so that
Y
du
Ony = h: po =0, P =Pa
Yy S——

— normal stress

shear stress

Thus A = —% and hence

G
u = —ﬂy(Qh - y).
Figure 5: Flow profile down an inclined plane.
e The pressure can be calculated from (10.2) and (10.3) as

p =Gz + pgrsina — pgycosa + C
for an arbitrary constant C. Using the normal stress condition on the free surface gives
Pa = (G + pgsina) + C' — pgh cos a,
which holds for all  and hence
G = —pgsin a, C = pq + pgh cos a.
Thus P =pa+ pg(h —y)cosa.

e Note: Both u,p are independent of x, which is consistent with the problem being translationally invariant
wrt x.

e The volume flux (per unit length in the z-direction) is

Q:/hudy: pgh?’sina7
0 3

which is proportional to the cube of the depth h.

[The volume flux is defined as the volume of fluid crossing a cross-section per unit time:

L3 rh h
Q:/u-ndS: / udy:Lg/ u dy,
S z=0 Jy=0 0

where n is a unit normal to the cross-section in the direction of flow. |
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1.10.4 Flows with circular streamlines

e In cylindrical coordinates (7,0, z) with velocity u = u,e, + ugep + u.e,, the Navier-Stokes equations take

the form
10 10ug  Ou,
ou, ug 10p 9 u, 2 Oug
V) — 2 == y—— 10.
8t+(u V)u " p8T+V Vou 2 2 a9 (10.5)
Ouyg Uy Uy 1 0p 9 2 Ou, ug
=0 : e . 10.
gt T Vet rop V|V ey T e (10.6)
Ou, 10p 9
. z = e——— A 1 .
T + (u-V)u paz—i—l/Vu (10.7)
where
~ or o 00 0z’ ror \ or r2 002 = 9z?
and 9 9 9
. 9
e T TR
e For planar circular flow
u = ugy(r,t) ey with u, = u, =0, (10.8)
for which the streamlines are circular.
e. reg e,
. . 10y oY oY . .
_ — -]l a2 2|2, _Y¥ 7 =
[u= VA (e, = o o o ~30% T 5 = 3p 0 = ¢ = ¢(r,t) which give

0o 0 9
streamlines ¢ =constant as circles r =constant at a given time ¢. ]

e The circular flow field (10.8) automatically satisfies (10.4), whilst (10.5)—(10.7) become

2
L ug _ Op
L= (10.9)
Oug  10p Pug  10uy g
"ot T rao <ar2 e 2 (10.10)
__9p
0=-2" (10.11)

(10.11) = p=rp(r,6,t)

(10.10) = % = Py(r,t) = p= Po(r,t)8 + Pi(r,t) for some functions Py, P;. But p should be a single

valued function of position and not multivalued = Py = 0. Hence p = p(r,t) and we obtain

ug ap a’LLQ i <82u¢9 1 8u§ Uug >

_ oY (10.12)

P T o ot ~

e Example: Steady flow between rotating cylinders

Consider two circular cylinders rotating about a common axis with angular speeds 21 and €29 at distances

R; and Ry respectively. For steady flow (10.12) gives
9 d?ug dug

dr2 + 'I"W — Uup = 0 R]_ <r< RQ. (1013)

No-slip conditions on the cylinders are

at r=Ry: ug =Ry, at r = Ro:  ug = Q9Rs. (10.14)
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The equation (10.13) is an FEuler equation and is
equidimensional in r (i.e. scale invariant under the 0
transformation r = a7, ug = g for any «). Let z = Inr then

d ddz _1d d d

ar dzdr _rdz  ar 4z

and
dr \ dr)  dz? dr? dr  dz?
Thus (10.13) becomes
d? B
—U; —ug=0 = up=Ae*+ Be * = Ar + —.
dz r

The conditions (10.14) determine the constants as

Ao QoR3 — O R? g (- Q9)RIR3
- R -RY - R-R

Figure 6: Flow between concentric cylinders.

1.11 Dimensionless Navier-Stokes equations

e As with all mathematical modelling, we will only ever start to understand the mathematical implications if
we write the model in dimensionless variables.

e Consider the flow of an incompressible Newtonian fluid with far-field velocity Ui past a stationary obstacle
of typical size L and with boundary 9D.

u=0ondD
u— Ul as |x| = o0

e In the absence of body forces, the flow is governed by the incompressible Navier-Stokes equations (22)-(23)
with F =0, i.e.
Ju

p<8t+(u-V)u>:—Vp+,uV2u, V-u=0,
with boundary conditions in the diagram above.

e Here and hereafter we will denote by [x] the typical dimensional size of the quantity .

e The typical dimensional sizes of the dependent and independent variables are given by

length scale:[x] = L;

velocity scale:[u] = U,
fime scale:[t] = =
ime scale:[t] = —;
U
pressure scale:[p] = to be determined.
e Hence, we nondimensionalize by scaling
N . L.
x=Lx, u=Un, t=gt P=pam+tI[plp

where pusm, is the atmospheric pressure.
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e Since x; = Lz,
0 1 0 1.
“or;  L%9n L

e The incompressibility condition V - u = 0 becomes
1 . N
EV-(Uu) =0 = V.u =0

e Similarly, the momentum equation becomes

f’f(a‘} (ﬁv)a> o v

e The ratio of the inertia term on the LHS to the viscous term on the RHS is given by

inertia term|  pU?/L  pLU LU
[viscous term]  pU/L%2  pu v

= Re,

which is the (dimensionless) Reynolds number.

e Note that two flows are dynamically similar if they satisfy the same dimensionless problem (i.e. same
geometry, governing equations, boundary conditions and dimensionless parameters).

e We will study both high and low Reynolds number flows.

High-Reynolds number flows Re > 1
e Choose the inviscid pressure scale [p] = pU? to obtain

i ) o,
g‘;+ (@-V)a=-Vi+ -V V-i =0.

e In this regime we hope to ignore the small viscous term and solve the inviscid Euler equations except in thin
layers on boundaries where viscosity is required to satisfy the no-slip boundary condition.

Low-Reynolds number flows Re < 1

e Choose the viscous pressure scale [p] = pU/L to obtain

I
e

Re <g‘tf+ (ﬁV)ﬁ) =-Vi+Vi V-u

e In this regime we hope to ignore the inertia term and solve the resulting slow-flow equations:

When is viscosity important in practice?

e Typical values of L, U, v and hence Re = LU /v for a car travelling at 30mph through air, a fish swimming
in water and for a marble falling through treacle are shown in the following table.

Object | L U v Re
Car 1m 10ms™—! 10_5m2s_1 109
Fish 0.1m | 0.lms™! | 1075m?2s~! | 10*
Marble | 1lem lems™! 1030m25_1 1073
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Remarks

e The Reynolds number is large for many everyday flows.
e Warning: Solution may generate its own length scale (e.g. tornado).

e If the Reynolds number is of order unity, then the Navier-Stokes equations must be solved numerically.
However, modern computers can’t get much past Re = 10% in realistic geometries.

e We will consider both large and small Reynolds number flows using asymptotics.

Nondimensionalisation
Nondimensionalisation is an important first step in the analysis of a system of equations for the following reasons:

o It identifies the dimensionless groups which control the solution behaviour. Further the sizes ofthe dimen-
sionaless groups determines the extent and influence on the solution. As such, the solution behaviour may
be characterized in terms of such groups.

e It provides information on the dimensional parameters necessary if the physical process is to be simu-
lated /recreated experimentally on different scales. An example would be simulating flight in a wind tunnel,
where the Re number should be kept the same as in the physical situation. If a plane has typical wing span
of L = 30m and travels at u = 500mph = 223m/s then for the model in the wind tunnel of typical length
L1, the air needs to be driven at a speed of u; = uli/L; for the Re number of the two situations to be the
same.

e Finally, it usually reduces the number of parameters in the model.
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2 High Reynolds number flows

2.1 Thermal boundary layer on a semi-infinite flat plate
2.1.1 Dimensional problem

e Paradigm for viscous boundary layer on a semi-infinite flat plate.
e The two-dimensional steady heat convection-conduction problem consists of

— inviscid fluid, velocity Ui, temperature T, upstream;

— plate at y = 0, = > 0, held at temperature T,

Y

I'=T,ony=0, >0

u="Ui T — Ty as 2° + 3> =

e Energy equation for temperature 7', with p = 0:

pCy ((Z + (u- V)T> = kV2T.

e We seek a steady solution "= T'(z, y) , with u = Ui, so that
oT 0*T N T
ox2 0y ) "’

where k = k/pc, is the thermal diffusivity (units m2s~!).

2.1.2 Dimensionless problem

e Choose arbitrary length scale L and set

x=L¢ y=1Lj T =T+ (Tp — Too)T"

The energy equation becomes
or  o°T N o°T
eC—— — —— _—
o 012 0y%’
where the Peclet number Pe = LU/k; ¢f. Re = LU /v.

P

A

Boundary condition on plate: T=1on g =0 < Z.

Boundary condition at infinity: 7' — 0 as 22 + §2 — oo.

The time scale for heat energy to convect a distance L is L/U, while the time scale for heat energy to diffuse
a distance L is L?/k. Hence, the Peclet number

Pe — L?/k  diffusion timescale

L/U  convection timescale’

We seek a solution for Pe > 1, i.e. e =1/Pe < 1.
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e Dropping hats on the dimensionless variables, the dimensionless problem is given by
oT o*T  9°T
R 26
ox E(8x2+8y2>’ (26)
where ¢ = 1/Pe < 1, with boundary conditions

T=1lony=0, x>0 (27)

and
T —0as 22 + y? — oo. (28)

2.1.3 Exact solution

e The exact solution to — is given by

2 oo
T(z, y) = erfc(n) = ﬁ/ e 5 ds,
U

where erfc is the complementary error function and

<x2 + y2)1/2 —r 1/2
erfc(n)
1 " ( ) e_772
erfe(n) ~
VT
as 1 — oo
) 1 n

e Key observation: y? = e(4n?z) + e2(4n?) .

Deductions from T = erfc(n), y? = e(4n’z) + £2(4n?)
(i) Isotherms n = constant are parabolae.

(ii) For T not close to zero we need n = O(1) as ¢ — 0. As ¢ — 0 with z = O(1) ,

_0(1) = gecfr) = n~—¥l o 1o f(|y| ) 29
n=0(1) y~ ~e(dnz) Uy e\ Vi (29)

Hence, there is a thermal boundary layer on the plate in which |y| = O(y/ex) as ¢ — 0 with z = O(1) , as
illustrated.

Thermal boundary

layer: |y| = O(v/ex )

Isotherms: 7 = const.
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2.1.4 Boundary layer analysis

Instead of solving exactly and then expanding, let us expand first and then solve.
In outer region away from plate, expand

oT =
=%—0 =  Ty=0,
ox

by the upstream boundary condition (28)); in fact, T = O(¢") as € — 0 for all integer n, as we know from
the exact solution that T' is exponentially small as ¢ — 0 with |y| = O(1) .

T~To+eT+-- =

To determine the thickness of the thermal boundary layer 6 = (¢) on the plate as € — 0, we scale y = oY
so that becomes ‘lT B Eéﬂl ) B 92T

or  0x? = §20Y2
Since the LHS is of O(1) , while the RHS is of O(g/8?) , it is necessary that £/62 = O(1) for a nontrivial
balance involving both convection and diffusion of heat energy.
Hence, we set (without loss of generality) 6 = £'/2, so that y = £'/2Y and

or_ T 0T

dr "oz oy
Now expand T' ~ Tp(x, V) +eTi(x, V) + --- to obtain the leading-order thermal boundary layer equation

2
%% (30)
This is the heat equation with = playing the role of time.
The boundary condition on the plate becomes
To=1onY =0<=x. (31)

To ensure that the boundary layer and outer expansions match (i.e. that they coincide in some intermediate
overlap region), we impose the matching condition

To(z, Y) — 0as |Y| — oc. (32)

The leading-order thermal-boundary-layer problem (30)-(32) has a similarity solution, viz.

e, 1y =i (21

which by is the leading-order term in the expansion of the exact solution as ¢ — 0 because Y = y/ gl/2,

Further remarks:

Outer solution:
Inz=0(1),y = O(1) we pose

T =To(z,y) + el (x,y) + ... as € — 0
to obtain oF
T - — _
At O(€%): a—o =0 = Ty = To(y) = 0 using the far-field condition that Ty = 0 as 2 + y* — oo.
x
T - _
At O(eh): 8—1 =0 = Ty = Ti(y) = 0 using the far-field condition that 77 = 0 as 22 + y? — co.
x

Continuing in this manner, it may be shown that the outer solution is 7' = 0 to all algebraic powers of e.
However this solution doesn’t satisfy the plate condition 7" = 1, suggesting the presence of a boundary layer
or inner region near the plate.

Inner solution:
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We scale as follows: x = z,y =Y, T =T where § =d(e) < 1. In z = O(1),Y = O(1) we obtain

or _ e 9T | O'T
or _ o2ov2 " “on2

Dominant balance is given by § = ¢'/2, so that

ar T | T

— +te—— 2.1
or _ av? ‘o 21)
with the plate condition
at Y =0,2>0: T=1,
and the matching condition with the outer
as Y — oo,z >0: T — 0,
which may also be referred to as the far-field condition for the boundary layer. Posing
T=Tyz,Y)+ el (z,Y)+... as e — 0
we obtain at O(€%):
oly  9*Ty
—_— = 30
or  0Y?’ (30)
onY =0,2>0: Ty =1, (31)
asY — oo,z >0: To — 0. (32)

This problem is scale invariant under the group scaling
r=a, Y =8Y, T,=n~1Ip,

with 3 = a!/? for invariance of (30) and v = 1 for invariance of (31). [Invariance means that the problem
in hat variables is the same as the original unhat problem.] Hence

A . (x Y . Y
To(z,Y) =10(2,Y) = To <a’ a1/2) =Ty <17 351/2>
choosing « = x since the scaling group holds for o € R, derives seeking a similarity solution in the form

Y

D@ Y)=fm), =57

Performing the partial derivatives:

Ty o on o Y Y Ty Y on . 1 / 82TO B 1 1" on o 1.,
gr T War = Tmant = ol oy T Wy = oant Gy T el Mgy =
we obtain the two-point boundary value problem:
fleomf =0, with f(0)=1, f(o)=0, (2.2)

which has the solution

f(n) = erfe(n) = ;E /00 e ds.

We remark that alternatively we could seek a similarity solution in the form
1 —-n
TO:f(n)a n= iy'r )
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for some n to be determined. Then

%_f/()@__nY f/__@/ %_ /@_if/ BQTO_ Lo
or " Ox 227t 2 9y T oY 2an’ ) 9Y2 4g2n’
and (30) gives

f// + 4n$2n71?7f/ -0

which must be independent of x (since f is a function of 1 only). Hence n = 1/2 and we recover the above
two-point boundary value problem (2.2) for f, when the boundary conditions are taken as well.

Note: The dominant balance in (2.1) changes when x = O(e) i.e. near to the plate edge. In z = O(e),y =
O(e) we then recover the full equation (i.e. all terms in (2.1)).

2.1.5 Conclusions

2.2

For ¢ = 0 (no diffusion) the upstream condition demands that 7' = 0, which doesn’t satisfy the boundary
condition on the plate.

For 0 < € <« 1, this solution applies at leading order except in a thin boundary layer near the plate in which
thermal diffusion (via the eV2T term) increases the temperature from its upstream value to that on the
plate.

This is a singular perturbation problem as a uniformly valid approximation cannot be obtained by setting
the small parameter equal to zero (cf. examples of regular and singular perturbation problems

Singular behaviour arises because the small parameter ¢ multiplies the highest derivative in (26).

The highest derivative can be ignored except in thin regions where it is sufficiently large that it is no longer
annihilated by the premultiplying small parameter.

Such regions usually occur near the boundary of the domain, and so they are called boundary layers.

Viscous boundary layer on a semi-infinite flat plate

2.2.1 Dimensional problem

Consider the two-dimensional steady incompressible viscous flow of a uniform stream Ui past a semi-infinite
flat plate at y =0 < z.

In the absence of body forces, the flow is governed by the incompressible Navier-Stokes equations -
with F = 0, which become

ou ou)  Op u  O%u
(s vy) = oot (5 8 (%)
@_}_ @ — _@+ &_’_8721) (34)
P\ "oz v@y Oy H\ 822 oy )’
Oou  Ov
ooy = O (35)

where u = u(z, y)i+v(z, y)j is the velocity, p(z, y) is the pressure, p is the constant density and u is the
constant viscosity.

The no-flux and no-slip boundary conditions on the plate are given by

u=0,v=00ony =0, x>0. (36)

e The far-field boundary conditions are given by

u— U, v—0as 22 +y* — oo (37)
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2.2.2 Dimensionless problem
e Choose arbitrary length scale L and set
x= L%, u=Uu, p=pU?%p

to obtain (dropping the hats "):

o, 0u_ v 1 (Fu P
Yor Uay Oz Re\0xz2 0y?)’
W00 op L (0P O
Ox dy Oy Re\ox? 0y?)’
Oou Ov

ety = O

where the Reynolds number Re = LU /v.

e The no-flux and no-slip boundary conditions on the plate are unchanged, while the far-field conditions

(37) pertain with U = 1, as illustrated in the following diagram.

Y

: u=0,v=00ny=0, >0
1 O T

w— 1, v—=0as 22 +y? = 00

e By , there exists a streamfunction ¢ (z, y) such that

w2 Lo
oy’ Oz
e Eliminating p between and by taking
0 0
—(38) — =—(39
5y (38 = 5(39)
and substituting for v and v gives
0 9 o O 0 l o202 L o4
——VY - ——VY=—VV =—V
Oy Ox v oz Oy v Re (V=) Re ¥
where V* is the biharmonic operator.
e Setting € = 1/Re, we have
A, V) 4
———— =V
Iy, z)
e The boundary conditions on plate become
oy o B
i By =0ony=0, >0,
SO we may set
0
w:—d}:Oony:O, x>0
dy

without loss of generality; that 1 is constant on the plate means that it is a streamline.
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e The far-field boundary conditions imply that

Y~y as 22+ y? — oo (43)

2.2.3 High Reynolds number regime
e We seek a solution to — for Re > 1, i.e.

1
e=—< 1L
Re <
e For £ = 0 (inviscid flow) the solution is ¢ = y, which doesn’t satisfy the no-slip boundary condition on the

plate:
0
u:—wzl#OOny:O, x> 0.
dy
e For 0 < ¢ < 1, expect this solution to apply at leading order except in a thin boundary layer near the plate
in which viscosity (via the eV41) term) reduces the u from its free stream value to zero:

— —> — -
— — — —
| [} 3 | 1
— — — Z
I 1 | 1 ..
Inviscid fluid (e = 0) Viscous fluid (0 < € < 1)
e Since there is no known exact solution, we use boundary layer theory.
2.2.4 Boundary layer analysis
e In the outer region away from the plate, we expand
Y~y tepr+- = Y=y (as expected).

e To determine the thickness of the boundary layer § = §(¢) on the plate as ¢ — 0, we scale y = Y.

e Since
= — ~ ]_
y
as ¢ — 0 in the outer region, we also scale 1) = JW.
e The partial differential equation becomes
00V 63\I/+£ foaa\ o (6 Foaa\ +£83\IJ B 64\II+2756 o*v +§84‘Il
§0Y \ 0x3 = §20Y320x dr \00z20Y  53avs ) - ouh 62 0x20Y2 04 0YH4

e Since the LHS is of O(1/6) , while the RHS is of O(¢/6?) , it is necessary that /6% = O(1/6) for a nontrivial
balance involving both inertia and viscous terms.

e Hence, we set (without loss of generality) 6 = £!/2, so that y = '/2Y, ¢ = £//2¥ and

R ) i L i L i B s O BN
oY dxz3 = 9Y 0Y20x or 0x20Y  Ox 0Y3 Ozt 0z20Y?2  9Y4’

e Expand ¥ ~ Wy +eW; + --- to obtain at leading order a version of Prandtl’s boundary layer equation:
oWy PBVy V3,

oY oY20x ox 0Y3  ay4’ (44)
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e The boundary conditions on plate imply that
_0Yy
=5y =
e We consider the boundary layer on the top of the plate, with Y > 0.

U OonY =0, z>0. (45)

e Since the outer solution ¢ ~ ¢y =y as ¢ — 0 and y = £/2Y, ¢ = £'/20, the matching condition is

Uyp~Y asY — oc. (46)

Justification for matching condition

e To ensure that the inner (boundary layer) and outer expansions match (i.e. that they coincide in some
intermediate overlap region), introduce e.g. the intermediate variable

7= Y _ el/2—e)y,
ga
where 0 < aw < 1/2, so that y — 0 and Y — oo as € — 0 with § = O(1) fixed.

e In the outer region substitute y = e*y and expand as ¢ — 0 with 7 = O(1) fixed:
U(z, y) ~ dolz, eY) ~ 7.
e In the inner region substitute ¥ = ¢(®=1/2)7 and expand as ¢ — 0 with 7 = O(1) fixed:

Pz, y) =PU(x, V) ~ 20 (z, 7).

e Hence, the expansions agree in the overlap region in which 7 = O(1) provided
51/2\110(:E, s(o‘_l/2)y) ~e"y ase—0,

i.e.
Uy(z, e@71205) ~ @125 ase -0,

which can only be the case if
Uo(z, Y)~Y asY — oc.

Further details:
In the streamfunction formulation, the problem is

6(1/), VQ%ZJ) _ 4
) eV (41)
or
o (O O _ O (O P\ _ (o , O N
Oy 0z \ 0z2 = 0y or oy \ 0z2  0y?2 )  \ Ozt 0x20y? oyt )’
with )
ony=0,z>0: wza‘;}:o, (42)
and the far-field condition
as 22 + y? — oo: W~y <0raw~1), (43)
Jdy
Outer solution:
Inz=0(1),y = O(1) we pose
¢:¢0($7y)+€¢1($a9)+ ase—0
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to obtain at O(e"):

oo, V) _,
Ny, )
with
as 22 + y? — oo Yo~y
and o0
0
ony=0,2>0: P = —— =0, 42
0= (42)
The solution
Yo=Yy (42.1)

satsifies this problem apart from the no-slip (i.e. second) condition in (42’). To satisfy this condition, we
now scale near to the plate and consider an inner region or boundary layer.

Inner solution:
We scale as follows: z = z,y = 0Y,9 = 0¥ where 6 = d(¢) < 1 and 6 = 6(¢) are two gauges to be
determined. In x = O(1),Y = O(1) we obtain

6*9v 9 a2xp+i62qf 6200 9 82\I/+i82\11 - 84\I/+3 o' +l54‘1’ (42.2)
§ Y Ox \ 022 62 0Y? 5 0z oY \ 922 " 020v2) ~ VU \ 9zt T 5209220Y2 ' 54ovi ) '
The largest terms are shown underlined on each side and balancing these requires
62 €
S5 = 06 = e. (42.3)
The plate condition is
Y=0,2>0: U= ov _ 0
onY =0,z : =9y =0
and the matching condition with the outer
as Y — oo,z >0: OV ~ lin%) Youter Matching
Y—>
9 a\]:l . awouter . 81/}
or sov "~ él_r)r(l) oy matching i
Since Yoyuter ~ Yo =y = 0Y then we deduce at leading order that matching requires
0=9 (42.4)
with 90
U~Y or a—ywl as Y — oo.
Consequently our dominant balance from (42.3) and (42.4) is given by
§=0=¢/%
Posing
U =Uy(z,Y)+o(1) as € — 0
gives the leading order problem (i.e. at O(€?)) in z = O(1),Y = O(1):
OV Wy I Wy 9 (42.5)
oY 0xdY?  Ox Y3  9y4’ '
v
onY =0,z > 0: \Ilozaayozo, (42.6)
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ov
asY — oo,z >0: Uy~Y or TYPNL (42.7)

The boundary layer equation (42.5) may be integrated wrt Y once to give

0V, 0¥ AL *Wy 9V talz)
oYy oz0Y  0x ov2  oays W)

(42.8)

where a(z) is arbitrary function of z. The matching condition with the outer (42.7) gives

oz 3
Oy o I
Y2 Y2

and thus a(x) = 0 so that (42.8) becomes

— 0,

Wy 0*Ty OV PV _ 9V (12.9)
oY 0xdY Oz 0Y? Oy’ ‘

Note: For a more general external flow, we may replace the matching condition (42.7) with

ov
asY — oo,z >0: Uy ~ Ug(2)Y or a—YONUS(x),
for which then a(z) = Us(x)Ul(z). (42.8) then gives the boundary layer equation corresponding to an
inviscid flow whose limiting behaviour on the plate y = 0T is from Bernoulli’s equation (or the x-momentum

equation)

dpo dUs
2 _p

dx *dx
where pg is the leading-order pressure of the inviscid flow near the plate.

1
po(x) + §Us(113)2 = constant  or

2.3 Alternative derivation of the boundary layer equations
2.3.1 Dimensionless problem

e Recall that the dimensionless two-dimensional steady Navier-Stokes equations are given by

ou ou dp u  0%u
bl e 4 47
u@x—H}@y 8m+€<8$2 +8y2 ’ (47)
v L+ v dp n 0% N 0%v (48)
U—+v— = ——+e|l =5+
Ox oy oy ox2 0y )’
ou Ov
242 =0 49
ozt oy : (49)
where u = u(x, y)i+ v(z, y)j is the velocity, p(z, y) is the pressure and ¢ = 1/Re < 1.
e The no-flux and no-slip boundary conditions on the plate are given by
u=0, v=00ony=0, x> 0. (50)
e The far-field boundary conditions are given by
u—1, v—0as 2? +y* = 0. (51)
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2.3.2 Boundary layer analysis

o If ¢ =0, then u = 1, v = 0; but this solution of the Euler equations doesn’t satisfy the no-slip boundary
condition on the plate.

e If 0 < e < 1, then u ~ 1, v = o(1) away from the plate on both sides of which there is a thin viscous
boundary layer.

To determine the thickness of the viscous boundary layer 6 = §(g) on the plate as € — 0, we scale y = §Y".

By (49),

ou 1 0v

o Tooy

so we scale v = dV for a nontrivial balance.

By ([47),

o ou_ p | O e
oz oY oz Tox2 ' s2oy?

1/2 for a nontrivial balance involving both inertia and viscous terms.

soweset d =¢

Hence, the boundary layer scalings are y = '/2Y, v = ¢'/2V and — become

Yor T oy T Tor Cos2 T oy
Oz oy ) oY 0z2 oYy?’
ou v
ox oY
e Expanding
u~uygt+euy+---, VeaVog+eVi+---, p~pg+epr+---,

we obtain at leading order Prandtl’s boundary layer equations

(9U() 8UO 8}90 82u0
4V = —— 52
Y0 gy T 0%y ox T ave (52)
_ Ipo
Ooug IV
970 . 4
ox + oY 0 (54)
e The no-flux and no-slip boundary conditions on the plate are unchanged at leading order, i.e.
u =0, Vp=0onY =0, x > 0. (55)
e The far-field boundary conditions are replaced by the matching condition that
up — 1 as |Y] — oo, >0, (56)

which ensures that the leading-order solutions in the outer region (away from the plate) and in the inner
boundary-layer region (on the plate) are in agreement in an intermediate ‘overlap’ region between them
(matching procedure not examinable).

e Note that a matching condition is not required for V because there are no terms involving the second-order
derivatives of Vj in the boundary layer equations (52))—(54)) .
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2.3.3 Implications of the matching condition

e By , the pressure does not vary across the boundary layer at leaching order, i.e.py = po(x) .

e By (56)),

8u0 821,6(]
— — Y
aY—)O, 8Y2—>0 as |Y| — oo,
so taking the limit |Y| — oo in (52) we deduce that
0
IO L0 as Y| — oc;
Ox
since pg is independent of Y,
Ipo —0
oxr ~

2.3.4 Streamfunction formulation

24

e By (54), there exists a streamfunction Wo(z, V) such that

_ 0¥
oy’
in terms of which , with dpg/0z = 0, becomes

oWy 0*Vy 9V %Wy 9*Tg

MW

Vo=——>",

Up

— = : 57
oY 0xdY  Oxr 9Y? D& (57)
The boundary conditions become (setting ¥y = 0 on the plate, without loss of generality)
ov
Wy =0, 8—;:0 onY =0< z. (58)
The matching condition becomes
Uy~Y as|Y|— oo (59)
Blasius’ similarity solution
Note that for all & > 0 the boundary-layer problem f is invariant under the transformation
oz, Y aY, Uy al. (60)

Hence, the solution (assuming it exists and is unique) can involve x, Y and ¥ in combinations invariant
under this transformation only, e.g.

U T
=0 v
;}/0 a function of v
21/2 zl/2°

We choose to seek a solution of the form
Y

Vo =a'2f(n), n= 12 (61)
and use the chain rule to show that f reduces to Blasius’ equation
1
"SI =0, (62)
with boundary conditions
f0)=0, f(0)=0, f(o0)=1, (63)

where prime/denotes differentiation with respect to 7.
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Remarks

(i)

The existence of the invariant transformation implies the ansatz (61) reduces the partial-differential-
equation problem f to the ordinary-differential-equation problem f. The proof uses group
theory and is beyond scope of course (see e.g. Ockendon & Ockendon, Appendix B for details), though we
shall use such invariant transformations below to facilitate other similarity reductions.

The ansatz is called a similarity solution because knowledge of Wy at z = x¢ > 0 is sufficient to
determine Wy for all x > 0 by a suitable scaling of x, 7.e. the solution looks geometrically the same at
different values of z.

Further details:
Problem (42.6),(42.7) & (42.9) is scale invariant under the scaling group

r=ar, Y= ozl/sz, Uy = al/zlilo,

for any aw € R4. Thus

128 (A X A1/23 x Y _ o 1/23 Y
Uo(z,Y) =a/"Vy(z,Y) =« \Ifo<a,a1/2)—x \Ilo<1,$1/2

choosing a = x. This motivates the similarity solution

Y
‘IIO(:E7Y) :xl/zf (77)7 n= m
Performing the partial derivatives:
on 1., _3 1 on _
9N _ Ly 2 o -1 on _ _-1/2
0w~ 2" 2™ oy ~ "

oV 0
871:0 _ %1’71/2]‘;(77) + $1/2f/(77)872 _ %1'71/2]0(77) + xl/Qf'(n)Y <—1$3/2> — 11‘71/2 (f . nf/) ’

2 2
A

=212 ) O = g2

oY oY
0*v 0 _ >Pw _
8Y20 _ f”(n)aig _ f//fU 1/2’ ay30 — 1f”/(77),
9Ty 1 —1/2 ne On Lo 1p / I Loy
8x8Y_§x (f_nf)ﬁ_ﬁx (f—f—ﬁf)——§$ nr,
we obtain the two-point boundary value problem (BVP):
1
" S h =0, (62)
with
f(0) = f(0) =0, f'(c0)=1. (63)

There is no exact solution to this nonlinear third-order ode (although it can itegrated twice to a first-order

ode). We are left with seeking a numerical solution, which can be reformulated as an initial value problem
(IVP) of solving (62) subject to

£(0) = f'(0) =0, () =¢,

where the parameter C' is determined so that the far-field condition f/(c0) =1 is satisfied. The details are
below.

Note: We remark, just as in the thermal case, that the above boundary layer analysis breaksdown near the
edge of the plate when z = O(¢) (and y = O(e)), the full equations then holding.
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2.4.1 Numerical solution of 1}

Blasius’ equation is a third-order, nonlinear, autonomous ordinary differential equation.

There are three boundary conditions at different boundaries (two at 7 = 0 and one at n = o0), so —
is a two-point boundary value problem.

Although there is no explicit solution, the boundary value problem may transformed into an initial value
problem and solved numerically, as follows.

Consider the transformation

fn)=~F (&), n=E&/,

where v > 0 is a constant.

Since
f/ — 72F” f// — 73F”, f/// — ’)/4F”/,

Blasius’ equation becomes
F”+%FF”:0. (64)
Hence, if we solve subject to the initial conditions
F()=0, F'(0)=0, F"(0)=1, (65)
then f(n) satisfies Blasius’ equation and the boundary conditions
F0)=0, [(0)=0, [f'(00)=7"F'(c0), (66)

i.e. f provided v = F'(oo)_1/2_

The initial value problem f may be solved numerically in maple by formulating it as a system of
first-order differential equations. It is found that v = C'/3, where f”(0) = 7® = C' ~ 0.332 is a constant
used below.

> # SOLVE NUMERICALLY BLASIUS INITIAL VALUE PROBLEM

ODE := diff(F(t),t) = U(t), dAiff(U(t),t) = V(t), diff(V(t),t) =
—-1/2*F (t)*V(t):

ICS := F(0)=0, U(0)=0, V(0)=1:

SOL := dsolve([ODE,ICS],numeric):

# FIND CONSTANTS

gamma0 := (rhs(SOL(10)[3]))"(-1/2);
C := gamma0”3;

gamma0 := (rhs(SOL(100)[3]))"(-1/2);
C := gamma0”3;

# PLOT VELOCITY PROFILE

with(plots):
odeplot (SOL, [gamma0~2*U(t),t/gamma0],0..6,color=black,thickness=
2,view=[0..1,0..8],1labels=["£f"(t)", "t"]1);

¥0 = 0.6924754573
C'=10.3320573956

¥0 = 0.6924754573
C'=10.3320573956
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e This trick was spotted in 1942 by Weyl, who also proved that there exists a unique solution to 7; 35
years later Blasius’ equation was reduced to a first-order ordinary differential equation.
2.4.2 Implications

e The dimensional shear stress on the plate is given by

_ PO Ou OV
712= (51/26Y+5 iz

Y=0

Since V.=0on Y =0,

,uU 82\110
veo €Y2L 0Y?

pU_ ou
el/2L oY

012 =

VU3)1/2 "
=p ( f7(0),
V=0 Lz

where f”(0) = C ~ 0.332 from above.

e That 019 — 00 as x — 0 reflects the fact that Prandtl’s theory is invalid at the leading edge of the plate. To
find the solution locally it is necessary to solve the full problem (as in the paradigm heated plate problem).

e Ignoring edge singularities, the drag D on one side of a plate of length L is given by
L 1
D= / orpd(Lzx) = / oraLdz ~ 2f"(0)p(vUL)"/?,
0 0
where f”(0) = C ~ 0.332. This prediction compares well with experiment for 103 < Re < 10°.

2.5 Variable external flow

e Consider the steady two-dimensional flow of a stream of viscous fluid with far-field velocity Ui past an
obstacle of typical dimension L, with Re = LU /v > 1.
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. u = 0 on boundary
u— Ui as x| = o0

We might expect a thin boundary layer around the body of thickness of O(L/Re!/?) in which viscous effects
are important. This is only partly true, as we shall see.
On smooth segments of the boundary the boundary layer analysis is the same, but in curvilinear coordinates.

We denote by Lz, Ly the distance along and normal to the surface, so that x, y are dimensionless:

e Boundary layer
thickness O(L/Re'/?)

The envisaged boundary-layer scaling is then y = Y/ Rel/?, where Y = O(1) as Re — o0, so that locally
Y = 0 looks like a flat plate.

It can be shown that there are no new terms in the boundary layer equations, so the only way the boundary
layer “knows” it is on a curved surface is through the matching condition.

Thus, in the boundary layer the dimensional streamfunction

LU
¢NW‘I’ as Re — oo,

where the dimensionless streamfunction W(z, Y') satisfies the boundary layer equation

U PV 9wV dpy | 9PV

— - =——+4 — 67
Y 0x0Y  Ox OY? dz  9Y3’ (67)
with boundary conditions
ov
\1’28720 OI].}/:O7 (68)
and the matching condition
ov
uoza—yﬁUs(x) as Y — oo, (69)
where Ug(z) > 0 is the dimensionless slip velocity predicted by the leading-order-outer inviscid theory.
As Y — oo, the matching condition implies that
0*v R dus, 0%V S0 Foaa\ S0
0xdY drz ' 0Y?2 )%
Hence, taking the limit Y — oo in gives
de dUs
= _ U 70
iz S (70)

so that
1
po(z) + §Us(x)2 = constant,

which is Bernoulli’s equation for the leading-order-outer inviscid flow on y = 0%.
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e There is a similarity reduction of the partial differential equation problem f to an ordinary differential
equation problem only if

Uy(x) o (x — x)™  or ef0)

where zg, m and c are real constants.

Y

2.5.1 The Falkner-Skan problem: U(z) = z™
e Since the partial-differential-equation problem f with U(z) = 2™ is invariant to the transformation
r—ar, Y — a(l_m)/2Y, U a(1+m)/2\11,

for all @ > 0, we seek a similarity solution of the form

\\ Y
2Atm)z f(n), = a=—myz

to obtain the Falkner-Skan problem
14+m
F" 4 f T m = (£)7) =0, (71)

with

Remarks

(i) The Falkner-Skan equation is a third-order nonlinear ordinary differential equation.

(ii) The Falkner-Skan problem f is a two-point boundary value problem that reduces to Blasius’ problem
for m = 0.

(iii) is autonomous, so the order can be lowered by seeking a solution in which f’ is the dependent variable
and f the independent one.

(iv) f can be transformed to an IVP for m = 0 only, so the numerics are harder than for Blasius’ problem,
but amenable to “shooting” methods.

Numerical Solution of the Falkner-Skan problem (71))—(72))

e In the plots below note that in the boundary layer the z-component of velocity is given by

ov Y

_ 2= _ ,mygl _
Upg = oY =T f(n)v n= x(l_m)/g'

e There are three cases, as follows.

(i) For m > 0, there is a unique solution with a monotonic velocity profile:

Y 4
p(1-m)/2

(ii) For —0.0904 < m < 0, there are two solutions, one with a monotonic velocity profile as in case (i), the
other with flow reversal:
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Y
x(l—m)/Q

5

Us(x)

(iii) For m < —0.0904, there is no solution.

e We return to these results after we have described the physics required to make sense of them.

2.6 Breakdown of Prandtl’s theory
2.6.1 Favourable and adverse pressure gradients

e Assuming Us(z) > 0, so that the slip velocity is in the z-direction, the sign of U, = dU,/dz determines
whether the flow in the boundary layer is driven by

(i) an accelerating outer flow (U] > 0) due to a favourable pressure gradient (p{, = —U,U. < 0) ;
(i) a decelerating outer flow (U, < 0) due to an adverse pressure gradient (py = —UsU. > 0) .
e Example: For Us(x) = 2™, we calculate

dp )
({ m—1 2m—1

(i) accelerating and driven by a favourable pressure gradient for m > 0;

(ii) decelerating and driven by an adverse pressure gradient for m < 0.

2.6.2 Flow reversal

e Numerical simulations of the boundary layer equations show that an adverse pressure gradient (p{, > 0)

causes flow reversal near the boundary.

e Flow reversal first occurs at the point of zero skin friction (i.e. zero shear stress) on the boundary:

Y4

dug ‘ Ls Oug N B uo .~ X
P (x <x5,0) >0 PYe (zs,0) = Y (z>xs,0) <0

e It may be shown that flow reversal is unstable, so

8u0

o >0
Y |y_g

is a necessary condition for the validity of Prandtl’s asymptotic solution (in which viscous effects are confined

to a thin-boundary layer on the body).
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2.6.3 Separation

e If the skin friction vanishes at x = x4, as in the schematic above, then the boundary layer equations break
down near (x5, 0) due to the formation of a (Goldstein) singularity, with

— o0 as(z, Y)— (zs 0).
e This means that the boundary layer solution cannot be extended into x > z; (because the boundary layer
equations are parabolic, with timelike variable x).

e Near (zs, 0) , the asymptotic structure is described by “triple deck theory” (see Acheson §8.6, Ockendon &
Ockendon §2.2.4), which predicts separation of the boundary layer from the body at the “separation point”

(zs, 0):

Upper deck: O(Re™/®)

Main deck: O(Re /2)
Lower deck: O(Re /%)

pl

O(Re’:‘/g)

e Physical explanation of boundary layer separation (Prandtl 1904): While the free fluid on the edge of the
boundary layer has sufficient momentum to traverse an adverse pressure gradient (Us > 0, U, <0, p{, > 0)
, fluid deep in the boundary layer, having lost a part of its momentum (due to friction), cannot penetrate
far into a field of higher pressure, and instead turns away from it.

e Separation sheds vorticity into the outer region, rendering invalid the inviscid irrotational approximation,
and hence the whole Prandtl picture.

Potential Flow Recap for following Examples 2.6.4 & 2.6.5:

0 10
Irrotational flow: VAu=0 = u=V¢ = a—(fe,, + ;£e9 for plane polars (r,0).
10 [ 0¢ 1 0%
; . _ 2, —
Incompressible flow: V-u=0 = V“¢ =0 or oy <r 87") 252 = 0.

Separable solutions: ¢ = f(r)g(0) = ¢ = (Ar™ + Br~")(C cos(nf) + D sin(n#)).

2.6.4 Example: Circular cylinder

e Consider the boundary layer on a circular cylinder of unit radius with far-field velocity i.
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e In polar coordinates (r, 6) , the velocity potential

r

o(r, ) = <r + 1) cos

if there is no circulation.

Note: The boundary conditions to derive this are:
Onr=1: u-n=_0, n:er:>g—f: ,
as r— 00 : uz%%l:gﬁ—)xzrcos& (uniform flow).

e Denoting by z the distance along the upper boundary from the forward stagnation point at —i, the slip

velocity
0¢ .
Us(z) =u-(—ep) - = —%(1, m—x)=2sinz,
O=m—z
giving a pressure gradient
d dU.
p(;)ix) =—-Us; i ® = —2sin2z.

e Hence, there is

(i) a favourable pressure gradient between the forward stagnation point at z = 0 and a maximum of the
slip velocity at = 7/2;

(ii) an adverse pressure gradient between x = m/2 and the rear stagnation point at = = 7.

e A numerical simulation of Prandtl’s boundary layer equations shows that flow reversal, and hence separation,
occurs at x = x5 ~ 1.815, just downstream of the onset of the adverse pressure gradient at z = 7/2 ~ 1.571.

e This completely destroys the Prandtl picture.

e In practice separation occurs for Re ~ 5 — 10, with two circulating vortex pairs in the wake:

Q \ Boundary layer
O / separation

e As the Reynolds number is increased, the flow in the wake becomes unstable at Re ~ 10? and turbulent at
Re ~ 10°

e The flow up to separation is only slightly affected in the steady laminar regime (Re < 10?) , the prediction
of the separation point x; &~ 1.815 being quite good.

e Deep in the turbulent regime at Re > 3.5 x 10°, the boundary layer itself becomes turbulent and the
separation point moves toward the rear stagnation point. The result is a sudden reduction in the size of the
wake and hence the drag on the cylinder-this is called the “drag crisis.”



2.6.5 Example: The theory of flight
e Note that Ug(x) = 2™ corresponds to flow past a corner or a wedge in the outer region.

e In polar coordinates (r, €) , the velocity potential

o, )=l eos ™ S U@) = uve,
(07

= —(z, 0) x 2™,

y=0 or

where m = /a — 1:

Note: The boundary conditions for ¢: On 6 = 0, a: un=0 n=e — % =0.
e This means we can consider the flow in the boundary layer near the sharp trailing edge of an aerofoil.

e [f there were no circulation, the outer inviscid irrotational flow would “turn the corner” at the trailing edge:

e On the upper surface of the aerofoil, Prandlt’s boundary layer problem near the trailing edge would be the
same as the Falkner-Skan problem with m ~ —1/2 (as m = 7/a — 1 and « is close to 2m).

e Since m < 0, there would be a strong adverse pressure gradient as the flow turns the corner, which would
result in separation of the boundary layer from the aerofoil.

e Such a flow is physically unrealistic, an experimental observation consistent with there being no solution to
the Falkner-Skan problem for m < —0.0904.

e Thus, boundary layer theory provides theoretical justification for the Kutta-Joukowski hypothesis, which
says that the appropriate outer inviscid irrotational solution has a circulation just sufficient for the flow to
separate smoothly at the trailing edge (i.e. with finite velocity).

e In practice it is this solution that describes laminar flow past a blunt nosed aerofoil at a small angle of
attack, since the thin viscous wake left behind the aerofoil has a small effect on the outer inviscid flow:

Viscous effects important
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3 Low Reynolds number flows

3.1 Slow flow past a circular cylinder
3.1.1 Dimensional problem

e Consider the two-dimensional steady incompressible viscous flow of a uniform stream U1 past a rigid circular
cylinder of radius a, centre O.

e In the absence of body forces, the flow is governed by the incompressible Navier-Stokes equations ([22)—(23)
with F = 0, which become
p(u-V)u=—-Vp+uViu, V-u=0.

e The boundary conditions are in the following diagram.

—> l

- ’
] ﬂ o
— -
-

—

u—Ulasr — oo

e,

3.1.2 Nondimensionalization
e In the slow-flow regime (see §1.11), we nondimensionalize by scaling

U
x=ax*, u=Uu*, p= M—p*.
a

to obtain (dropping the stars *)
e(u-Viu=—-Vp+ V3u, V-u=0.

where the Reynolds number
_pUa

7

e = Re

3.1.3 Streamfunction formulation

e In two dimensions the incompressibility condition implies the existence of a streamfunction v independent
of z such that
u =V A (vk) = curl(vk) = ui + vj = ure, + ugpey.

where
_%w _ 9%, _ 1oy _ %
Yoy VT e T rae YT o

e Hence the vorticity
w = curl(u)
= curl®(¢k)
= V(V - (¥k)) - V*(vk)
=V <az/)) — (V*))k
0z
= —(V*)k.
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e We take the curl of the momentum equation to eliminate p, and obtain thereby the two-dimensional steady
vorticity transport equation

e(u-Vw = V3w
for the z-component of vorticity w = —V?21.
e In Cartesian coordinates (x, y) , with ¢ = ¢(z, y) ,

O )
- 0z oy Oyox Oxdy

so that o V21/J)
e~ 2 = VHV)) =V,
Ay, z) (V9)
where 52 52
2 —_ N
Vo= 922 oy?’

e In plane polar coordinates (r, ) , with ¢» = ¢ (r, ) ,
0 uwd 1o 19y 0

NN = 86 T T o0 0r v or 00"

so that . V) )
rogy v
where . P 10 v
Vicar ot rae
3.1.4 Dimensionless problem

e We have derived the streamfunction formulation

R 0 SR

oy, )

of the dimensionless two-dimensional steady incompressible Navier-Stokes equations, and will consider below

e A, V)

o VY 73)

the slow-flow regime in which the Reynolds number ¢ is small.

e The no-flux and no-slip boundary conditions on the cylinder become

¢:21f:0 onr=1, (74)

where we set ¢ = 0 on r = 1 without loss of generality; note that » = 1 is a streamline.

e The far-field condition becomes
Y~y=rsinf asr— co. (75)

3.1.5 Asymptotic solution for r = O(1) as ¢ - 0

o We seek a regular perturbation solution to (73)-(75) by expanding

Y~y e+ ase = 0.

e We obtain at leading-order the slow-flow approximation in which the inertia terms are neglected, i.e. the
biharmonic equation
Vo = 0.

o7



We would like to solve this fourth-order partial differential equation subject to the boundary conditions
(76)-(75), which become

_ 9o
Y=

Yo ~rsinf asr — oo.

=0 onr=1,

The far-field condition suggests we seek a separable solution of the form

Yo(r, 8) = f(r)siné,

which implies that
22 10 1 02 2 10 1
2 _ (9 Lo L o . _ (Y ro 1 .
Vo = <8r2 + ror + r2 802> f(r)sind (87“2 + r Or r2> f(r)sind,
and hence that

2 1o 1\ ,
V4¢0 = <87“2 + ;5 — 7“2> f(’f’) Slne.

Thus, f(r) satisfies the fourth-order linear ordinary differential equation

2 1d 1\’
with boundary conditions
f)=f'(1)=0, f(oc)=1 (77)

The ordinary differential equation is homogeneous because it is invariant under the transformation
r — ar (o # 0) , so we seek solutions of the form f(r) = " to obtain

<d2 1d 1

2t v ) ) = b= 1) 1 = [ 2

so that
@ 1d 1
dr2  rdr 2

2
) 50) = = 1en =2 - 1
Hence n =—1,1,1, 3, so has general solution

flr)= é + Br + Crlogr + Dr3,
where A, B, C' and D are constants.
Note that this general solution may also be derived by making s = logr the independent variable.
By the boundary conditions on the cylinder in ,

f(1) =
f1@)

= A+ B+ D=0,

0
0 = —-A+B +C+3D=0,

giving

C=4A+2B, D=—(A+ B).
Applying the far-field condition in ,

f'(c)=1 = B=1,C=0, D=0.
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But
C=0,D=0 = A=0, B=0,
so it is not possible to satisfy both the boundary conditions on the cylinder and the far-field condition

Hence, there is no separable solution of the form ¢ (r, ) = f(r)sin 6.
Can prove rigorously nonexistence of a solution for slow flow past a cylinder of arbitrary cross-section.

This is known as the Stokes paradox (1851), which wasn’t resolved until 1957!

3.1.6 Resolution of Stokes’ paradox
e The key observation that facilitates the resolution of the Stokes paradox is that f is a singular

perturbation problem because the slow-flow approximation is only valid for
1
r -,
€
Further details: The full equations are
eu-Vu=—Vp+ Viu, € = Re,
in the steady case. Since u = O(1) (see the incoming flow condition), the intertia terms are of size O(e/r)

and the viscous terms of O(1/r?). Thus they are comparable when er = O(1) i.e. r = O(1/¢). The slow
flow approximation (i.e. neglecting the inertia terms) only holds for r < 1/e and thus breaksdown when

r=0(1/e).
Hence, instead of imposing the far-field condition
Yo ~rsinf  asr — oo,
we need to match with a “boundary layer at infinity”

)

o [,

Y=

™| 3

To balance inertia and viscous terms we scale
Y _
g o=

€

6(22)7 621[}) _ @41[}

so that at first it appears we recover the full two-dimensional formulation:

9(9,2)

Further details: We now are considering the region » = O(1/¢) through the given scalings. The scaling for 1

a3 = 0(1)).

following from the far-field condition (75) (or equivalently noting that ¢) must scale like z or y for u = O(1)

i.e. using u = % =0(1),v = o=
However, far away the cylinder has a small effect on the flow, so that
o~ GOy

where §(¢) < 1 is to be determined.
Further details: The gauge d(e) has to be found and the first term arises due to the far-field condition (75).

. o
AR N (P LAV
Y ozr

Introducing the expansion into the equation for @ZAJ gives
+ 0(52)> —0(0?) = 6V*H).

<1+5
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e Obtain at O(d) Oseen’s equation

a(@hﬁ%ﬁl) _ 4.0
oG
or
0 &2 4
=V = Vi
oz
or 56
ll__ 2 LS =
e Vp+V V-a=0 (78)
upon expanding u ~i+da—+---, p ~ &dp, so that
o _ O, 0
a5 03

e There is no closed form solution to Oseen’s equations (78), but can use Fourier transforms to show that the
relevant solution (with zero flow at infinity) has the local expansion

1[)1 ~ Erlogrsinf ast — 0,
where FE is an arbitrary constant.

e It is then necessary to match the asymptotic expansions for 1 in the inner region (near the cylinder, with
r = O(1)) and in the outer region (far from the cylinder, with r = 7/e, # = O(1)) by ensuring the constants
A, B, C, D and E are such that the expansions are in agreement in an intermediate ’overlap’ region between
them.

Matching details

e Further reading: Perturbation Methods by E.J. Hinch; Perturbation Methods in Fluid Mechanics by M. Van
Dyke.

e To ensure that the inner and outer expansions match ( i.e. that they coincide in some overlap region),
introduce the intermediate variable

so that r — co and 7 — 0 as € — 0 with 7 = O(1) fixed.

e Recall that the leading-order inner solution
A 3\ .
Yo=|—+ Br+Crlogr+ Dr° | sinf
r

satisfies the boundary conditions on the cylinder r = 1 provided

C=4A+2B, D=—-(A+B).

e In the inner region fix 7 and expand as € — 0:

Y~ Po(e”

( ) 81n9+Clog<>81n9+---

1
3o (Dr sin ) + = —(—aC'loge)Tsing + - - .
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e In the outer region fix 7 and expand as € — 0:

Y o~ é(fsinH—l—(WA)l—l---')

f=gl—ay
I-ar )
~ sin @ + —Fe'~*Flog (¢! F) sin @ + - - -
€ €
1 _ .
~ g—a(l + (1 —a)dEloge)rsing + - - .
e The expansions agree in the overlap region in which 7 = O(1) provided
D=0, —aCloge=1+(1—-a)éEloge.
e This is true for all 0 < a < 1 provided
C =0F = L <1
S log(l/e) T
e Hence, the correct expansion for the streamfunction in the inner region in which » = O(1) is given by
1 T 1
~——rl — —+ — | siné
P log(1/2) (r ogr 5 + 27“> sin
as e — 0.
e This asymptotic expansion for ¢ proceeds in powers of 1/log(1/¢) , rather than in powers of € as originally

anticipated, so very slow convergence.

Alternative Matching details:
Outer solution for # = O(1) or r = O(1/€):

L s
¢:¢outer:%:g+*w1+...
€ € €
g0 .
~ =+ -Erlnrsinf + ... as 7 — 0
€ €
=y+0Erin(er)sing + ... (in inner variables, 7 = er)
=rsinf + dErin(er)sinf + ... (all in polars)
= (0Erlnr+ (1 +0EIne€)r)sinf + ... (ordered for r large) (Mout)

Inner solution for r = O(1):

Y = Vinner = %o + - ..
= (A'r_1 +Br+Crinr + Dr3) sinf + ...
~ (Dr3 +Crlnr+ Br+ Ar_l) sinf + ... as r — oo (ordered for r large) (Min)

For matching
lim winner = llm u)outer-
T—00 7—0
Comparing (Mout) with (Min) gives
D=0, C=0FE, B=1+dFlne.

However, from the boundary conditions on the cylinder for the inner solution we have

C =44 + 2B, D=—(A+B).
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Thus )
B=—-C, A=-C

2
and further .

1
——C=14+Clhe = C~——n-.
2 Ine

Since C' = 0 E, we take

1
0= ——o, E=1.
Ine

Thus the leading order streamfunction for the inner region r = O(1) is

r 1 1
~d|lrlnr— -+ — |siné ith 6§ = —— .
(0 (r nr 2+2r> sin wi e
3.1.7 Exercise: Drag calculation

(i) Show that the dimensionless slow-flow approximation may be written in the form Vp = — curl(wk), where
w = —V?24, so that in plane polar coordinates

Op _ 10w 10p Ow
or  rob’ rofd  or’

Further details: Use the streamfunction form ¢ = ¢ f(r)sin @ to calculate the vorticity as
2
w=—90—sinf
r

and the velocity u = V A (¢k) with components

1oy f(r) oY
urf;%fé " cos 6, Uy = =

—5f'(r)sin.
The momentum equation may be integrated to give the pressure as
2
p=—0—cos0 + po,
r

where py is the constant far-field pressure.

(ii) Hence determine the leading-order terms in the expansions of the stress components

as ¢ — 0, with r = O(1).

Opr = —p+28u’", 4 (@) 1 du,

o T T e\ ) T o0

Further details: Show that
1 ! /
Opr = 20 (+f—f>cose, o9 = —0 (f"—i+£) sin 0

roor  r2

and on the cylinder are
Opr|r=1 = 20 cos 0, Orglr=1 = —29sin 0, (78.5)

using f(1) = f/(1) =0 and f(1) = 2.
(iii) Deduce that the dimensionless drag per unit length on the circular cylinder r = 1 is given by
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(1, 0 0 —o,9(1, 0)sinfdd ~ .
/0 