@ CrossMark

J. Fluid Mech. (2016), vol. 798, pp. 256-283. (© Cambridge University Press 2016 256
doi:10.1017/jfm.2016.309

New singularities for Stokes waves

Samuel C. Crew' and Philippe H. Trinh!}

Y incoln College, University of Oxford, Oxford OX1 3DR, UK

20xford Centre for Industrial and Applied Mathematics, Mathematical Institute,
University of Oxford, Oxford OX2 6GG, UK

(Received 15 October 2015; revised 21 March 2016; accepted 28 April 2016)

In 1880, Stokes famously demonstrated that the singularity that occurs at the crest of
the steepest possible water wave in infinite depth must correspond to a corner of 120°.
Here, the complex velocity scales like f'/3 where f is the complex potential. Later
in 1973, Grant showed that for any wave away from the steepest configuration, the
singularity f = f* moves into the complex plane, and is of order (f — f*)!/?> (Grant
J. Fluid Mech., vol. 59, 1973, pp. 257-262). Grant conjectured that as the highest
wave is approached, other singularities must coalesce at the crest so as to cancel the
square-root behaviour. Despite recent advances, the complete singularity structure of
the Stokes wave is still not well understood. In this work, we develop numerical
methods for constructing the Riemann surface that represents the extension of the
water wave into the complex plane. We show that a countably infinite number of
distinct singularities exist on other branches of the solution, and that these singularities
coalesce as Stokes’ highest wave is approached.
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1. Introduction

In his now-classic work, Stokes had provided a supremely elegant proof that if the
crest of an irrotational wave has a sharp edge, then this edge must necessarily make
an angle of 120° (Stokes 1880b). The argument is as follows: for an ideal fluid in
deep water with complex potential f = ¢ + iy and spatial variable z = x + iy, the
constant-pressure condition on the free surface, y =n(x), may be taken as

1|df |
2 |dz

+gn=0, (1.1)

where g is the gravitational parameter, the corner of the wave is assumed to lie at
the origin with z =0 and ¢ = 0, and the free surface is the streamline ¥ = 0. In
the neighbourhood of the corner, if we assume the complex potential takes the form
f~Az", then it necessarily follows from (1.1) that n=3/2. Examination of the angular
change in z across the crest yields the desired result.

In fact, Stokes’ demonstration was somewhat unexpected, as it corrected an earlier
claim by Rankine. As Stokes explains:
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In a paper published in the Philosophical Magazine, Vol. XXIX (1865),
p- 25, Rankine gave an investigation which led him to the conclusion that
in the steepest possible oscillatory wave of the irrotational kind, the crests
become at the vertex infinitely curved in such a manner that a section of
the crest by the plane of motion presents two branches of a curve which
meet at a right angle. (Stokes 1880b, p. 225)

After correcting Rankine’s result, Stokes then wondered whether such a wave of
greatest height could be obtained in practice:

This however leaves untouched the question whether the disturbance can
actually be pushed to the extent of yielding crests with sharp edges
... After careful consideration I feel satisfied that there is no such earlier
limit, but that we may actually approach as near as we please to the form
in which the curvature becomes infinite, and the vertex becomes a multiple
point where the two branches with which alone we are concerned enclose
an angle of 120°. (Stokes 1880b, p. 227)

Stokes’ conjecture on the existence of such waves would spark a century long
inquiry, until it was positively affirmed by Toland (1978) with the help of many
other foundational works (see the review by Toland (1996) for a more comprehensive
listing). Equally important, but distinct from studies on the theoretical existence of
such waves, is research that attempts to describe the structure of the wave solutions
close to the wave of greatest height. We shall focus on this line of inquiry.

For any wave with amplitude below that of the greatest, the main crest singularity
moves off the free surface and lies on the imaginary axis in the complex plane. It
was Grant (1973) who first highlighted the complexity of this process, and primarily
demonstrated two key difficulties. First, higher-order corrections to Stokes’ local
result for the steepest wave are extremely non-trivial and require expansions in
transcendental powers (cf. Trinh, Chapman & Vanden-Broeck 2011, appendix A for a
similar discussion). Second, for wave solutions away from the steepest configuration,
the singularities change in power. As Grant writes:

Now also consider the effect of increasing the amplitude. At maximum
amplitude, z(f) has one singularity, of order 2/3. For any lesser amplitude,
it has singularities only of order 1/2. The only way a continuous approach
to greatest amplitude is possible is for z to have several coalescing
singularities. (Grant 1973, p. 261)

This final statement, regarding the coalescence of square-root singularities, was
frustratingly left unexplored. Although Grant understood (particularly aided by the
numerical results of Schwartz (1972, 1974)) that the main singularity would approach
the free surface, there was no evidence given of any supplemental singularities, nor
any explanation of the mechanism by which the local power would change.

The search for such singularities would not be straightforward. Previously,
the location of the main singularity was identified using techniques in series
acceleration, such as in the work of Schwartz (1974) and Longuet-Higgins & Fox
(1978). As explained in Baker & Graves-Morris (1996, p. 44) branch points in
an analytically continued function will typically manifest as sequences of poles in
a Padé approximant. Thus, numerical results on the distribution of poles within
a series-accelerated approximation can often be deciphered in order to intuit



258 S. C. Crew and P H. Tiinh

the presence of a branch-point singularity. Recently, Dyachenko, Lushnikov &
Korotkevich (2014, 2015), performed extensive numerical computations of the Stokes
wave with great attention to the numerical error; these results were used to construct
the Padé approximants, and then to reconstruct Grant’s main singularity.

Such series-acceleration techniques can be unreliable or difficult to interpret (see e.g.
p. 20 of Drennan (1988) and Dallaston & McCue (2010)). Indeed, as it pertains to
the Stokes wave, following the early efforts of Schwartz (1974), Tanveer (1991) had
described the situation as follows:

However Schwartz’s apparent conclusion on the form of the nearest
singularity ... is in error since it suggested that the branch-point power
changes continuously between 1/2 and 1/3. This erroneous conclusion
highlights the difficulty of extracting reliable and accurate information
from a Padé approximate method (which) is practically feasible only for
the nearest singularity and just to leading order. (Tanveer 1991, p. 140)

Using an alternative method of analytic continuation, Tanveer (1991) calculated
precise estimates of the main singularity on the imaginary axis, and based on the
form of the associated free-surface equation, further conjectured the existence of a
mirror singularity, which lies on the negative imaginary axis in the adjacent unphysical
Riemann sheet. In § 3, we will review Tanveer’s reason for believing the existence of
the mirror singularity.

Although Tanveer’s work had confirmed the presence of the main singularity and
conjectured the existence of its mirrored pair, the work did not comment on the
elaborate Riemann sheet structure that would result from the combined influence
of these two points. During a recent conference talk, Lushnikov, Dyachenko &
Korotkevich (2015), indicated that an infinite number of Riemann sheets would
emerge if both singularities were continuously encircled in an alternating manner;
these results have now appeared in a preprint (Lushnikov 2015).

The main goal of this paper is to construct the Riemann surface that represents the
extension of the water wave into the complex plane; in this way, we shall develop a
more complete picture of the singularity structure. Put very simply, we want to see
the singularities. We compare and contrast various numerical methods for achieving
this analytic continuation, and demonstrate that in fact, the singularity structure of
a finite amplitude wave in deep water is much more complicated than previously
anticipated. In particular, not only do we confirm the existence of Tanveer’s (1991)
mirror singularity, but we also demonstrate the numerical existence of further square-
root singularities, shifted in a diagonal fashion, away from the imaginary axis and
lying on subsequent Riemann sheets of the water wave.

As we explain next, the appearance of such diagonally shifted singularities is often
a generic phenomenon associated with nonlinear differential equations (cf. Chapman,
Trinh & Witelski 2013). Moreover, singularities that arise on an unphysical Riemann
sheet have been noted in other free-surface flows as well. We highlight, for example,
the case of the wave—structure interaction studied in appendix A of Trinh & Chapman
(2013b), where such singularities were crucially related to the subsequent analysis of
the resultant water waves.

1.1. The importance of understanding singularities

The characterization of the singularity structure of the Stokes wave, or indeed any
solution of a singular differential equation, brings with it several advantages (Tanveer
1991). First, knowledge of the set of singularities can lead to the development of
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better analytical methods, and in rare cases, even exact solutions. In the limiting
configuration of a steep wave, the curvature near the crest is governed by the effects
of the nearest singularities. Thus, the corresponding asymptotic analysis will often
require detailed information regarding the type and distribution of such points. In § 10,
we shall discuss the implications of our work with the previous matched asymptotics
procedure of Longuet-Higgins & Fox (1977, 1978) for the ‘almost-highest wave’.

Second, deeper understanding of the singularity structure can lead to better
numerical algorithms for computing waves. Although Stokes’ classical approach
is sufficient for calculating the profiles of moderate waves (as performed by e.g.
Schwartz (1974) and Cokelet (1977)), the presence of the crest singularity severely
limits the radius of convergence of Stokes’ series representation. In order to compute
steep waves, it becomes essential to adopt a different series expansion that accounts
for the change in the power of the main crest singularity (cf. Olfe & Rottman (1980),
Vanden-Broeck (1986)). In theory, if we know the detailed locations and scalings of
the set of singularities, we can subtract any undesired behaviour from the solution
and extend the radius of convergence.

Finally, and perhaps of widest significance, the importance of knowing the
steady-state singularities extends to problems of the time-dependent type as well. As
explained by Tanveer (1991), the occurrence of finite-time interfacial singularities in
many free-surface problems is typically associated with singularities in the unphysical
complex plane hitting the real domain. For instance, most directly connected with
the Stokes wave is the study of how the approach of the nearest crest singularity
to the free surface is associated with the breaking of the wave (cf. Cokelet (1977),
Schwartz & Fenton (1982), Baker & Xie (2011)). However, the role played by
complex singularities in the development of physical instabilities is a generic one,
and there are a wide range of applications, ranging from Kelvin—-Helmholtz and
Rayleigh-Taylor instabilities, to rupture and pinch-off phenomena (see e.g. Tanveer
1991 and Chapman et al. 2013).

2. Mathematical formulation

Let us consider symmetrical two-dimensional periodic waves of wavelength A under
the influence of gravity g at the surface of a fluid of infinite depth. The waves move
from right to left with constant speed ¢ relative to an inertial frame, so we shall
take a frame of reference moving with the waves and seek steady solutions. The
fluid is assumed to be inviscid and incompressible, and the motion irrotational; thus
the solution may be represented as an analytic function, z(f), of the complex spatial
variable z=x 41y and complex potential f = ¢ + iy, where ¢ is the velocity potential
and ¢ the streamfunction.

The reader will note the standard reversal of the independent and dependent
variables. Although Stokes (1847) originally developed his method in the natural way,
seeking to solve f as a function of z, he published a supplement several decades later
(Stokes 1880a) where he detailed the much simpler inverse formulation. The elegance
of the trick relies on the fact that when solving for z(f), the boundary conditions are
imposed at a known location in the f-plane. Our mathematical presentation follows
closely from those formulations discussed in Wehausen & Laitone (1960), Schwartz
(1974), and Vanden-Broeck (1986, 2010).

The Cartesian coordinates are chosen with the x-axis at the mean water level and the
y-axis is directed vertically upwards against the direction of gravity. The free surface
is chosen to be the constant streamline ¥ =0, and ¢ =0 at the wave crest. The phase
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velocity, ¢, is defined to be the average horizontal velocity at a constant level, y, of
the fluid. That is,

A 0x

and consequently, it follows from the assumed symmetry and periodicity of the wave
that ¢(n1/2, y) = (cnd)/2 for integer n. Thus, we shall seek to solve for the fluid
within the single periodic domain —(cA/2) < ¢ < (cA/2) and ¢ <O0.

The system is non-dimensionalized using A as the unit length and ¢ as the unit
velocity; henceforth, all variables are dimensionless. The flow in the physical and
potential planes is shown in figure 1(a,c). We have shifted the vertical axis of the
physical plane for a better visualization of the singularities to be studied in later
sections. We write Bernoulli’s equation in complex conjugate form (cf. Wehausen &
Laitone 1960, §34) as

1 2=

5+ Ilm(z)z’(tﬁ)z/(aﬁ) =BZ ($)7 (¢), (2.2)

for —(1/2) < ¢ < (1/2) and ¢ = 0, and where the overbar denotes complex
conjugation. The introduction of the Bernoulli constant, B, differs from (1.1) due
to the chosen mean level, and we have defined

1 ("9 1
c=/ ibdx=;¢(ﬂ,y), 2.1
0

C2

~ g(1/2m)

for the square of the Froude number, representing the balance between inertial and
gravitational effects.

A solution of the nonlinear water wave problem then consists of solving (2.2) for an
analytic function z=z(f) in ¥ <0, such that z is periodic and the velocity is uniform
at infinite depth. This requires that z(f + 1) =z(f) and Z'(f) — 1 as ¢ - —o0.

One approach is to posit a series expansion for the solution. For example, following
Stokes (1880a), we may set

i (2.3)

Z/(f) =14+ Z an672ninf’ (24)

n=1

and then impose the boundary conditions. This determines the coefficients a,, which
are assumed to be real by the imposed symmetry of the wave.

The following numerical scheme is described by Vanden-Broeck (2010). First, the
infinite series (2.4) is truncated after N — 1 terms. Next, the N + 1 unknowns B, u
and a,, n=1,..., N — 1, are determined by applying Bernoulli’s equation (2.2) at N
equally spaced points in a single periodic domain. A final equation fixes the amplitude
of the wave, and the resultant nonlinear system of N + 1 equations is solved using e.g.
Newton’s method.

In regards to the amplitude condition, in this paper, we enforce a fixed value of €
defined by

e€=1-

LOHO 2.5)

the same convention as in Vanden-Broeck (1986). In the limit ¢ — 0, the wave
height decreases to zero and € =1 corresponds to Stokes’ greatest wave. As noted by
Vanden-Broeck, the series expansion of (2.4) provides an accurate approximation to
the wave solutions for €2 less than roughly 0.6. We will mainly limit ourselves to
waves that can be accurately calculated using (2.4).
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It was shown by Chen & Saffman (1980) that gravity waves of infinite depth are not
unique, and the classical Stokes wave can bifurcate into new families of solutions at
large values of €. A similar result for finite depth was confirmed by Vanden-Broeck
(1983). These irregular waves are distinguished by having more than one crest per
wavelength. In this paper, we focus on the classic Stokes wave (and thus one crest
per wavelength).

Numerical computations of the Stokes waves using (2.4) are presented in figure 1(a)
for steepness values in the range 0.01 < €2 < 0.80. The table of € versus u values
in figure 1(b) confirms that we have achieved at least five decimal accuracy in
comparison with numbers reported in Cokelet (1977) and Vanden-Broeck (1986).
The dashed curve in figure 1(a) corresponds to the wave with €2 = 0.99, which is
computed using the generalized Havelock method detailed in Vanden-Broeck (1986).
The crest singularities shown in the figure will be explained in the forthcoming
sections.

3. Preliminary theory of the singularities

The case of € =1 corresponds to Stokes’ greatest wave and for this configuration,
the singularity is located at the corner f = 0 of the 120° crest. For any € < 1, the
singularity moves into the upper half-complex-plane, say, at f =fi; we will continue
to refer to this point as the main crest singularity. Let us first review Grant’s (1973)
approach to studying f3, and in particular, the argument that if such a singularity exists,
then it must be of square-root type — here, by square-root type, we mean that the local
power of a solution component (such as z or ') is m/2 for some integer m.

3.1. On the crest singularity and its mirror image

Our first objective is to explain how the free surface, where f = ¢ € R, can be
analytically continued into the upper half-plane. By the assumed symmetry of the
free surface about the crest, ¢ =0, we have the following relation between z and its
conjugate:

2P) = —z(~9), (3.1)

valid for real values of ¢.

Next we apply the symmetry condition (3.1) to Bernoulli’s equation (2.2) and
reduce the conjugate relations. The resultant equation can then be used as a
prescription for continuing into the rest of the complex ¢-plane. We write the
free-surface potential as ¢ = ¢, + i¢. and, abusing notation somewhat, we relabel
¢ — f € C. After simplification, (2.2) yields

QNHPNHZ () =u, (3.2)
where we have introduced the functions
P(f) =uB+in[z(=f) +z(f)] and Q(f) =27 (=). (3.3a,b)

When f is in the upper half-plane, then those components in P and Q that require
values of z and 7' at —f are known from the convergent in-fluid series (2.4). Thus
(3.2) forms a well-defined initial value problem for z in the upper half-plane. In §4,
we shall discuss how (3.2) can be used to explore the topology of the Riemann surface
of z.

The following dominant balance argument can be verified a posteriori. Let us
suppose that the singularity lies at f in the upper half-plane. Based on the imposed
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symmetry of the fluid and the form of (3.2), we would then expect f; to be purely
imaginary. Near this point, we assume that the solution can be represented in the
form of

z~ag+a (f —fa), (3.4)

for constants ay; and a;, and 0 < a < 1. The restriction on « ensures that 7' is
sufficiently singular. Since Q is an analytic function in the upper half-f-plane, then
at leading-order in (3.2), we have

P(fa) = uB + milz(=f1) +z(f1)]1 =0, (3.5)

which yields a value for ay in (3.4). At next order, we may then use the fact that
Q(fy) is bounded and non-zero to conclude that

(f=f* ' =0)=a=1/2, (3.6)

thus establishing the square-root behaviour as remarked by Grant (1973).

In fact, it is a consequence of the periodicity of the fluid that there will be further
copies of the crest singularity, situated at fy + Z, with each copy separated by the unit
length of the periodic interval. The general properties of the singularities that arise due
to the underlying periodicity of (2.4) are non-trivial, and we explain these details in
§ 8. For the moment, let us focus on those singularities that are generated within the
main interval.

Like Tanveer (1991, p. 149), we may develop the following argument to propose
that a mirror singularity might be expected at —fy. Suppose that using (3.2), the
solution is analytically continued around the branch cut from f;, and re-enters
the lower half-plane; this part of the plane corresponds to an unphysical Riemann
sheet, rather than the in-fluid domain. Since Q is singular at —f,, then based on
the condition (3.2), it is likely that z will also be singular. Although Tanveer did
not elaborate beyond this point, we may go further and apply the same dominant
balance arguments as above. It may be verified that, unlike the main crest singularity
associated with property (3.5), P tends to a non-zero constant as f tends to —f;.
Using (3.6) for O, an asymptotic balance for (3.2) yields

7 =0(f +f)"* = z~by+ b (f +£1)*, (3.7)

for constants by and b,. The weaker nature of the singularity at the mirror point does
not appear to have been remarked upon by others.

3.2. On general singularities

Later in § 6, not only do we confirm the existence of the main crest singularity and its
mirror image, but in § 7, we will also demonstrate the existence of further singularities:
a countably infinite set, diagonally shifted from the positions of fy and —f,. In fact,
the dominant balance arguments that we have applied to conclude (3.6) and (3.7) can
be repeated for a general singularity, say, at f =f~.

We propose that there are two types of singularities, whose classification depends
on the behaviour of P as f approaches f*. The two types are described by

0 with z~ag +a;(f — )2,

P~ {Const. £0 with z~ by + by (f — f*)2. (3.8)

Recall the argument applied to justify the existence of the mirror singularity; that is,
a singularity at f; must produce a non-analyticity in P or Q at the reflected point —f;.
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This argument can be similarly applied to the case of a general singularity. Suppose
for instance that f* is a singularity of 1/2 type in (3.8), so with P — 0. Studying
the functional form of P in (3.3), it would seem unlikely for it, too, also to tend
to zero as f tends to —f* after crossing the lone branch cut from f*; after all, there
is no reason for the analytic continuation to be symmetric in this fashion. Therefore,
it is likely that the mirror singularity —f* switches to 3/2 type. Based on this very
informal argument, we intuit that the chance existence of a singularity due to P =0
can cause the emergence of a further mirror singularity where P # 0.

We will apply a variety of techniques to compute the locations of the singularities.
The most crude approach is to observe the values of z and 7' along particular curves,
surface meshes or contour plots. Branch cuts appear as differences in levels or kinks
within such plots. Alternatively, we can observe numerical unboundedness as the
singularity in 7' or 1/7' is approached. Generally, very approximate locations of the
singularities are not difficult to obtain.

However, a more elegant approach can be designed based on contour integration.
Near a general singularity, we have, after inversion,

2O ~df =) =)~ + D', (3.9)

for constant d. We divide the second relation by 7z’ and integrate the result along a
closed counterclockwise contour, C’, containing 7' = 0. The second term on the right-
hand side of (3.9) integrates to zero, and this yields

Fegm pLar=s Sy (3.10)

21 Jo z 2mi

The last equality in (3.10) follows from the change of variables with dz’ =z"df, and
subsequent integration of the map of the contour, C, in the f-plane. The + sign
follows from the ambiguity of not knowing whether a positive orientation in the
Z-plane is associated with a positive orientation in the f-plane. However, once this
orientation has been established (e.g. for the main crest singularity), the conformal
property of complex functions assures us that the sign will not change for other
singularities. In our numerical computations to follow, we integrate (3.10) using the
trapezoid rule, where the values of f and 7' are found from the scheme of §4 and 7’
is calculated using centred differences.

Finally, note that based on the dominant balance arguments above, only singularities
of square-root type are admissible in the analytic continuation of the Stokes wave.
Locally, the Riemann surface near a square-root branch point contains only two sheets
(or two branches), and thus positive or negative rotations are equivalent. However, due
to the uniqueness of the analytic continuation process, this local property must also
be true for the global surface. For instance, consider a point f on the Riemann surface
for z(f) which is reached through a positive (counterclockwise) rotation about a given
branch point. If we were to replace the positive rotation by the equivalent negative
(clockwise) rotation, this process would yield the same value for z(f).

4. Analytic continuation of the Stokes wave

Once the coefficients of the series representation have been computed using the
free-surface condition (2.2), the in-fluid values, with Im(f) = ¢ < 0 are obtained
directly from (2.4). However, the analytic continuation of the free surface to the
upper half f-plane is severely limited by the main singularity identifiable with the
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crest of the steepest wave. In the past, authors had attempted to use techniques
in series acceleration (primarily Padé approximants) in order to extend the radius
of convergence of (2.4). However, such techniques can be unreliable and produce
spurious singularities. We now implement two methods for constructing the analytic
continuation of the Stokes wave.

4.1. Method 1: Reflection about the origin

The first method of analytic continuation, which we introduced in § 3.1, was originally
proposed by Grant (1973) and then extended by Tanveer (1991). Here, we improve the
method to allow for exploration onto further branches of the solution. From (3.2), we
have the equation

1
27(~f) {B T+ z(—f)]}
751

The simplest way to solve (4.1) is to begin on the known free surface calculated
from (2.4), and integrate upwards along a vertical path in the f-plane. For example,
consider the path labelled AB in figure 2(a). The path is reflected about the origin to
AB. Since the values of z(—f) and 7/(—f) are known from the series expansion (2.4),
then (4.1) provides an initial value problem that can be solved using any standard
numerical stepping scheme (in our case, an adaptive Runge—Kutta solver).

We use this method to mesh the € =0.1 surface shown in figure 2(). In the region
Im(f) <O, this yields the physical fluid, which can be verified to match the convergent
series values. In the upper half-plane, we observe a clear branch cut and branch point,
labelled A, which is the main singularity as conjectured by Grant (1973). We shall say
more about the specifics of the surface and singularity in § 6.

Now suppose we wish to obtain values on other branches of the solution. Consider
the rectangular path labelled ABCD in figure 2(a). The values of the solution along
this rectangular path only depend on the values along ABCD, and can thus be
determined in an analogous manner, by solving (4.1) beginning from .A.

Once the values in the upper half-plane are known, the path of continuation can
proceed into the lower half-plane as well. If the prior journey had not circled a
branch point, then we remain on the same Riemann sheet, and the lower half-plane
will be the same as the in-fluid region calculated from (2.4). Indeed, this is the case
in figure 2(b) where we observe the rectangular contour lying on the same surface
mesh as determined through vertical integration. On the other hand, if a critical point
was encircled, the continuation has taken us onto an unphysical Riemann sheet lying
‘adjacent’ to the physical fluid. This continuation process can then be iterated with
the values in each lower or upper half-plane reflected in order to provide the values
for the next half-plane.

The strength of the reflection scheme for continuation is that it is accurate; for a
good approximation to the initial values on the free surface, the only error in the
scheme occurs from the integration of (4.1), which can be controlled. However, the
approach is limited by the requirement that the chosen path for continuation must be
symmetric about the origin, and thus it does not allow us to derive the values z(f)
for a general trajectory. In our numerical results for § 6, we implement the reflection
method for rectangular contours centred about the origin.

(N = (4.1)

4.2. Method 2: Boundary integral continuation

We propose an alternative approach that uses the boundary integral formulation of
the Stokes wave problem and is not limited by symmetry. Boundary integral schemes
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FIGURE 2. Projection of the Riemann surface into (Ref, Imf, Re z)-space for the solution
with € =0.1. The surface is meshed by numerically integrating (4.1) along vertical paths
beginning from the free-surface solution along the Ref axis.

provide an alternative treatment of potential free-surface problems, particularly in
cases where the problem geometry (here fluid of infinite depth) is more complicated.
An extensive review of such techniques can be found in the book by Vanden-Broeck
(2010).

To begin, the complex velocity is written as df/dz =exp(r —i6) for the fluid speed
e’ and streamline angle by 6. The logarithmic hodograph variable, §2(f), is then
introduced by

2(f) =t —i0 =log[1/Z'(/)]. (4.2)

Since £2(f) is an analytic function in the fluid region, Cauchy’s integral formula
applied to a rectangular contour bordering ¢ € [—0.5, 0.5] and i € (—o0, 0] provides
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a boundary integral relationship between the real and complex parts of §2. For values
along the free surface, f = ¢ 4 i0, the boundary integral is given by

0.5

(¢ +1i0) :][ Bpree (@) cot[m(¢ — ¢)]do, (4.3)

—0.5

where the integral is of principal value.

At this point, the integral (4.3), combined with Bernoulli’s equation (2.2), provides
a closed system for the determination of T and 6 along the axis, and indeed this forms
the basis for such numerical boundary integral schemes. Instead, we will be interested
in analytically continuing the integral (4.3) off the axis. The analytic continuation of
the governing system gives two equations for t = 7(f) and 6 = 6(f), valid now for

feC,

dr 2
e+ T sing=0 and t+aif =H(f), (4.4a,b)
daf u

with a ==£1 for Im(f) 2 0, and where we have defined H according to

0.5
H(f) = / Opee (9) cot[7 (0 — )] dg. @5)

0.5

The first equation in (4.4) is the differentiated and analytically continued form of
Bernoulli’s equation (cf. equation (6) in Vanden-Broeck (1986)), written in terms
of t and 6. The second equation is the analytically continued boundary integral,
where a = 1 for continuation into the upper half-plane and a = —1 for the lower
half-plane. Notice that upon taking Im(f) — O in the equation, we obtain a principal
value integral and residue contribution, and subsequently return to (4.3), which indeed
verifies that the continuation is done properly.

Consider a continuation into the upper half-plane that returns down to the real axis.
Upon crossing into the lower half-plane, we have

where 6., is the analytic continuation of the free-surface angle into the lower halif-
plane. Now if 6 on the left-hand side of (4.6) is still on the same Riemann sheet
as O, that is to say, a branch point or pole was not encircled during the prior
continuation, then 6(f) = 6..(f), and we recover (4.4b) with a = —1. This would
yield the values within the physical fluid region. However, if our analytic continuation
took us onto a different Riemann sheet, then (4.6), with additional work to find the
value of 6., is required in order to obtain the values in the lower half-plane.

The analogous rule applies to the case where we wish to continue from (4.6) back
into the upper half-plane. For this, we must now include an additional residue,

T+ 0 = H(f) + Zieree(f) - 2iéfree(f)~ (47)

If it was the case that no critical point was encircled while in the lower half-plane,
we would remain on the same Riemann sheet as in (4.6), 64, = 64., and we thus
recover (4.4b) with a = 1. However, if we have traversed onto the another Riemann

sheet, then in general 6., will possess different values from éf,ee, the latter of which is
the analytic continuation of the free surface directly into the adjacent upper half-plane.
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FIGURE 3. Projection of the Riemann surface into (Ref, Imf, Re £2)-space for the solution
with € =0.1. The surface is meshed by using the boundary integral continuation.

Let us now describe the numerical procedure for continuation along an arbitrary
path in the f-plane, written as y and shown in figure 3. We first break y into segments
each time the axis is crossed, and write

Yy =1 Up(s)U---yals), (4.8)

with each subsegment parameterized by s € [0, 1]. The first contour, y; is in the upper
half-plane, and the initial point, y;(0) lies on the free surface. By our notation, y; lies
in the upper half-plane if i is odd and the lower half-plane if i is even. Let 7;, 6;
and £2;, be the analytically continued values along the subsegments, y;. In addition
to the subscript notation, we shall use an additional superscript, such as .Qi(’), for
individualized Riemann sheets, to be explained below.

First, we solve for §2, = 91(1) in the upper half-plane using (4.4b). Once y; reaches
its end along the real axis, we continue onto ¥, in the lower half-plane and introduce

the residue contribution (4.6). We call this newest contribution, .(22(2), that is to say,

from (4.2) it is composed of 7, —i6”. The quantities 7.” and 65° correspond to

physical fluid quantities and can be calculated by returning to (4.4b) and solving with
a= —1; more simply, it consists of the in-fluid values directly obtained from the series
representation (2.4).

Once we arrive at the end of y, and continue onto y3, then again, we must include
a separate residue contribution and this involves the introduction of £2{°. Thus, the
desired values of £2 on each section of the plane will depend, in a recursive manner,
on the values of the preceding Riemann sheets. Consequently,

27 depends on 2, 2"V .. QUtD, (4.9)

Then the analytic continuation, 7" and 0/, along the curve y; will involve solving
the nth-order system of equations,
dz¥ 2N . )
n__ _ [ sin 0,-(’)} e for 1 <j<n, (4.10a)
df W
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Re[£2(/)]

FIGURE 4. Projection of the Riemann surface into (Ref, Imf, Re £2)-space for the solution
with € =0.1. The surface is meshed by using the boundary integral continuation.

with the initial conditions,
tfree (¢) for ] =n,
WD0= T (4.10b)
T((n])—n(f) for 1<j<n-—1.
f=Vn-1(1)

The initial condition in (4.10b) imposes that the newest residue contribution begins
from the physical free surface, ts.., calculated from (2.4) and (4.2). The initial
conditions (4.10b) impose that the previously generated contributions all continue
from the end of the preceding path.
The system of differential equations is then closed with the system of recursively
defined algebraic equations for 6 given by
D" =H(H) — 7, forn>1, (4.10¢)

n

and

(—Mi0P =H(f) =t +2i Y (=D, for 1<j<n—1and n>2. (4.10d)

k=j+1

Given a path, y =y, U---Uy,, the system (4.10) can be solved using any standard
ordinary differential equations scheme (in our case, an adaptive Runge—Kutta solver).
The result of using the boundary integral continuation with the path shown in
figure 3 is displayed in figure 4 for the Stokes wave with € = 0.1. The centreline



270 S. C. Crew and P. H. Trinh

of the surface mesh in figure 4 is the exact computed value, and for visualization
purposes, we have extended the centreline into a surface mesh in the following way:
at each point, we construct a planar patch using a vector, v, along the arclength
direction, and its normal, v,, assumed to satisfy conformality of the function $£2(f).
Unscaled, these are written

v =[Re(y’), Im(y'), Re(£2,)] and wv,=[Re(iy’), Im(iy’), Re(i82,)], (4.11a,b)

where 2 is the derivative of §2 with respect to the parameterization variable s. The
real operator in the third component of both vectors can be changed if a different
three-dimensional representation is desired. In this way, the surface mesh shown in
figure 4 is an accurate representation of the local topology of 2.

Notice that in contrast to figure 2, in figure 4, we prefer to plot §2 since it is
readily available from the calculations. However, the z values can be retrieved through
(4.2). In this paper, we often switch between different solution measures and thus
different visualizations of the Riemann surface. For example, we may prefer to plot
the real or imaginary parts of the profile z, or the logarithmic hodograph variable,
2 =log(1/7)) or the complex velocity, exp(£2). Because the solution must always be
of square-root type in z, then continuation properties between z and (1/7') will be
analogous. Depending on whether the real or imaginary part is taken, visualizations
of £2 may display a logarithmic branch point. Generally, our strategy is to choose a
measure where the relevant properties (e.g. branch cuts or singularities) are easily and
unambiguously identified.

5. Notation for the singularities and Riemann sheets

In this section, we develop a notation to describe the singularity structure and
collection of Riemann sheets for the complexified Stokes wave. For this, we must
anticipate the results presented in §§6-8; there, we shall demonstrate that when
viewed in the f-plane, a set of complex singularities of the Stokes wave will form
two symmetrical V-shaped arrays, as illustrated in figure 5(a). Singularities are initially
marked with an upper-case alphabetical letter, e.g. A, B, C and so forth. Those in
the lower plane are distinguished by an underline, such as A, while those in the left
plane are distinguished by a superscripted ¢, as in B‘.

In fact, the two main crest singularities, A and A, will also appear in a periodic
fashion, and such copies will be marked by a subscripted index, such as Ayj, Ai,
and so forth, connected with the singularity A in the main interval. We have devoted
a special section in § 8 to explain the periodic properties of the singularities; however,
our principal challenge in this paper will be first to understand the singularities within
the main periodic interval.

It is important to remark that singularities in the Stokes wave may not necessarily
— and indeed they do not — exist on all Riemann sheets. The illustration in figure 5(a)
is effectively a projection of all such singularities onto the two-dimensional f-plane.
Thus, depending on the path of continuation that is used to reach a given point in the
f-plane, the singularity may or may not exist at that given location.

In order to complete the description of the Riemann surface, we must thus describe
how each individual Riemann sheet is reached using a path of analytic continuation.
To this end, we introduce a sequence of letters for each individual sheet. The letters
correspond to the singularities introduced above, with the additional symbol ‘@’ to
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FIGURE 5. (a) Notation for the singularities; the sequence illustrated in (b) to (d) shows
the continuation paths (arrow) to reach the Riemann sheet AAB (e). Branch cuts are taken
upwards/downwards for the upper/lower half-planes.

refer to the main Riemann sheet on which the physical fluid is found, and from which
the analytic continuation begins. Consider, for example,

Riemann sheet AAB. 5.1

Each of the three letters in the sequence corresponds to crossing a branch cut from the
associated singularity in the positive (counterclockwise) sense. Thus, Riemann sheet
AAB is reached by beginning on @, and then encircling the singularities at A, A and
B, one after the other, as illustrated in figure 5(b—e). As established in § 3.2, crossing a
branch cut in the positive direction is equivalent to crossing in the negative direction;
however, for precision of our numerical results, we will always consider the above
notation as corresponding to a positive crossing.

6. The crest singularity and its mirror image

The purpose of this section is to apply the two methods for analytic continuation
developed in §4 in order to develop a visualization of the Riemann surface for the
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Stokes wave and to verify the presence of the proposed singularities. We will generally
depend on the boundary integral scheme in § 4.2, which is unrestricted in the path of
analytic continuation. However, the reflection scheme in § 4.1 was used throughout to
verify the accuracy of paths that were sufficiently simple (notably paths in § 6.1).

6.1. The main Riemann sheet & and the crest singularity A

Previously, during the explanation of the reflection scheme of §4.1, we presented
clear visual evidence of the main crest singularity, as it appears in the surface plot of
figure 2. This singularity, which we refer to as ‘A’, lies on the main Riemann sheet <.

Let us confirm that A is indeed a square-root branch point. Using the boundary
integral scheme, we analytically continue along a path that begins from the origin,
tends upwards to f; =0.05i, and then performs two rotations around an approximated
singularity location for A at f = f,. For the purpose of the visualization, we use a
perturbed circle parameterized by

FO=1fi —fal [L+8sin{1(G +06)}] @, (6.1)

where 6y = Arg(f; —f1) and 0 <6 <4m.

The numerical result, shown in figure 6, corresponds to the Stokes wave with
steepness parameter € =0.3. The three-dimensional representation in figure 6(b) shows
the square-root behaviour as projected into (Ref, Imf, Re §2)-space. In particular, note
that the point, f; =0.05i, which is shared by the two circular orbits, takes two distinct
values at the beginning of the first and second orbits, before finally returning to its
original value at the end. This behaviour is to be expected for a path that has
traversed both Riemann sheets near a square-root branch point.

Once the numerical values along the path are known, we may then apply the
integral equation (3.10) to calculate a more accurate location for the singularity. For
example, for € =0.3, this computation yields fy &~ 0.1756i. As shown in figure 1(c), in
the limit € — O, the singularity tends to ico, while in the limit € — 1, the singularity
tends to the origin. The general dependence of the singularity location on € will be
presented later in § 8.

Not only do these numerical results allow us to confirm the square-root nature of
the solution, but we may also confirm the precise multiple of the square-root scaling.
In §3, we argued (from Grant 1973), that

z~ag+a (f —fA)I/z» (6.2)

near the singularity. We now examine figure 6(a), which plots the real part of z as
a function of the arclength along the path. As the path undergoes the two circular
orbits, Re(z) undergoes one periodic cycle. This confirms the 1/2 power in (6.2), as
opposed to some other (f — f4)™? power. This same scaling will not be true of the
mirror singularity in the lower half-plane.

6.2. The adjacent sheet and its mirror singularity A

In §3.1, we explained why a singularity might be expected at the mirror point —f; on
the Riemann sheet adjacent to &. The conjecture, which was first proposed by Tanveer
(1991), is based on the reflection property of (3.2) and the non-analyticity of P and
Q due to f;. Let us call this mirror singularity ‘A’, with the underline to remind us
of its placement in the lower half-plane.
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FIGURE 6. (a) Re(z) as a function of the arclength, s of the path of continuation; (b)
the Riemann surface in (Ref, Imf, Re £2)-space showing that two rotations around the
A singularity brings the path back to itself. The surface is computed using the boundary
integral method and corresponds to € = 0.3 Stokes wave. The singularity is located at
f=~0.176i.
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FIGURE 7. (a) Re(z) as a function of the arclength, s of the path of continuation. ()
The Riemann surface in (Ref, Imf, Re £2)-space showing that two rotations around the
A singularity brings the path back to itself. The surface is computed using the boundary
integral method and corresponds to the € = 0.3 Stokes wave. The two singularities are
located at '~ £0.176i.

Consider the case of € =0.3. Using the boundary integral scheme, we perform the
following two motions: first, beginning from f =0 on the main sheet &, we perform a
positive (counterclockwise) orbit around A, and then return to the origin. This brings
us to the adjacent Riemann sheet. Next, we analytically continue downwards to f; =
—0.05i, and then perform two positive rotations centred on —fs using the analogous
parameterization to (6.1). The result is shown in figure 7(b) and confirms that two
rotations brings the function back to its original value. Calculation of the integral
(3.10) confirms that the singularity is indeed located at the reflected point.

In §3.1, we demonstrated that if such the mirror singularity was found, then the
solution must of the form

2~by+ by (f +£2)?, (6.3)

as opposed to the 1/2 scaling of (6.2). This is confirmed with figure 7(a) where
Re[z(f)] is observed to undergo three nearly periodic cycles instead of the single cycle
in figure 6(a).

One might ask: what happens if the path does not encircle a singularity? For this,
a comparison can be drawn to the analytic continuation shown in figure 2 where
the rectangular path (shown solid) does not encircle the A point, and therefore the
continuation into the lower half-plane returns to the physical fluid (where it is analytic
everywhere and single valued). Had there been no singularity in the lower half plane,
we would expect all paths of continuation to be single valued along closed orbits.
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7. The existence of diagonal singularities

By now, we have confirmed the existence of the two main singularities. Now we
will show that further singularities emerge when proceeding deeper into the surface.
These new singularities are accessed through paths that traverse branch cuts from
A and A, and are positioned diagonally from A — more specifically, they tend to a
constant argument as € — 0. As explained in §3.2, the initial emergence of these
diagonal singularities is somewhat out of chance; their existence depends on initial
conditions of the Stokes wave and they are associated with locations where P = 0.
However, once they appear, they will also cause the appearance of further mirror
singularities, where P #£ 0.

In fact, after submission of this work, we became aware that within a preprint,
Lushnikov (2015) had independently conjectured the existence of such diagonal
singularities. The conjecture was based on an observation that the sudden transition
of powers (cf. p. 257) from two singularities on the imaginary axis to the single
highest-wave singularity could be achieved using an infinite sequence of nested
square roots; the resultant function then admits off-axis singularities.

7.1. Diagonal singularities B and B

As an example, consider the case of € = 0.5 and the Riemann sheet AA. In order
to reach this sheet, we have taken the continuation path shown in the lower
two-dimensional plane of figure 8(b); it begins on the positive Re(f) axis and
forms an elliptical orbit around A and A. We have chosen to illustrate the Riemann
surface using its projection into (Ref, Imf, Im 1/z)-space, as this provides the most
clear visualization. Unlike the previous visualizations, where we have only meshed
along the continuation path, here, we provide a more complete surface mesh for
the Riemann sheet. The surface mesh is created by first encircling A and A, and
then returning to the real f-axis. From the axis, the continuation moves in straight
vertical lines (similar to the scheme to create figure 2). This process has the effect
of imposing vertical branch cuts from the singularities.

On the Riemann sheet shown in figure 8(b), we observe the usual A singularities
and its periodic copies. Only A_; and A, are seen, but other copies are shifted a unit
length away from one another. Notice that periodic copies of A do not appear; we
shall explain the periodicity structure in more detail in § 8. Most importantly, observe
the presence of the two branch cuts clearly visible in the lower half-plane. These
branch cuts emerge from two points located symmetrically about the imaginary axis:

f~0.557—0.3961 and fz ~—0.557 —0.396i. (7.1a,b)

The doubly rotated path in figure 8(b) confirms the square-root nature of the new
diagonal singularity, B, and examination of figure 8(a) verifies that the singularity is
of 1/2 type, as anticipated by (3.8).

A plot of the locations of the B-type singularities is shown in figure 9(a), along
with the dependence of the singularity magnitudes and arguments as a function of e,
seen in subplots (b,c). It is confirmed that as € — 0, |fz| — oo, while Argfp tends to a
constant. The numerical computations are restricted to € < 0.6, since above this value
it becomes difficult to preserve accuracy of the singular integral. Based on figure 9,
however, we would expect that |[fz| — 0 as € — 1, but the limiting angle is unclear.



‘g punoIe uoleIOI J[qNOp Y SUIMOYS USOW UOIENUNUOd pue VY I0J ysow aoeyns ayJ, (q) 'Sureos
Aren3urs oy) sutigyuod yred oy) Suofe (2)oYy jo orgoid ayJ, (v) *g 18 Auem3urs payodind o) uay) pue Y pue y S9[OIOUL jey) Yied ® SMO[[O]
UONBNUNUOD) “G'() = > YIIM JABM SINOIS Ayl IoJ {,g ‘g} sonuen3uls [euoSerp oY) JO S0UIISIXd dY) WIYUod saumord om) 9say[, ‘g FANOI

,4 pue g 18 sapuemsurs
[euoSeIp Jy) wWolj IsLe
SINO YoueIq [RUONIPPE OM], J

-
V'V 199US UUBWARY ) 10U )
yred 9y s20p UONENUNUOD

) Jo urod siy) e A[uQ

[e]
(2p/fp)wr

S. C. Crew and P H. Tiinh

(v pue 'y) sardoo
orporiad )t pue v woiy [4
91euI3LIO SAY) (I[QqISIA

AIe $)NDd yourIq 1Y)
VV 199ys uuewary uQ @

(p3uspore) s
0 Sv 0¥y ¢¢ 0¢ ¢T 0T &1 01 €S0 O

T T T T T T T () [ —
i k|
! 1cn—
KyenSus g/1 i mmo w
103 91945 auo ySnoiy | 40 ~
\O $003 1noju0d doof ajqnoq 1 ] ~
5 dg0 ()




New singularities for Stokes waves

(a) Bsingularities in the f-plane
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FIGURE 9. Location of the singularities {B, B, B‘, B} (from first to fourth quadrants)
calculated using the integral (3.10). Singularities B and B‘ are found on Riemann sheet
AA. Singularity B® is found on AAB and singularity B is found on AAB‘.

7.2. Mirror diagonal singularities B and B*

We may confirm that as B and B are approached, P — 0, which follows our argument
leading to (3.8). Thus, from the same argument, it is expected that the singularities
(7.1) will cause the emergence of mirror singularities (reflected about the origin) due
to the non-analyticity of P and Q. In fact, these mirror singularities can be more
simply argued based on the reflection scheme of §4.1.

Consider a rectangular path, similar to figure 2, that orbits both A and A. In the first
quadrant (top right) of sheet AAA, z(f) is derived based on values of z(—f) from the
third quadrant (bottom left). Consequently, z(—f) lies on Riemann sheet AA, which
contains the B’ singularity with P — 0. Thus, by (4.1), it follows that there is a
singularity at the reflected point in the first quadrant. These mirror singularities, B
and B’ are confirmed in the later figure 10(f), and we may also verify that they are
of the 3/2 type in (3.8).
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FIGURE 10. Riemann sheets for the ¢ = 0.5 Stokes wave. The white nodes mark
the crest singularity and its two periodic copies, the mirror singularity and the first
diagonal singularities. Black nodes mark singularities arising from diagonals. The contours
correspond to Re §£2 =Re(r —i0).
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7.3. Further diagonal singularities

The diagonal structure does not end there. In fact, it can be verified that there are
two further singularities of C-type: {C, C¢, C, C'}. For example, if we perform two
elliptical orbits instead of the single one of figure 8(b), we would arrive at Riemann
sheet AAAA. On this sheet, we discover a similar topology to the one for AA, but
with the diagonal set {B, B, C, C'}. These C-type singularities are diagonally shifted
further than for the previous case of the B-type singularities, and they too will induce
the mirror set {C, C*}.

If we strictly confine ourselves to climbing the AA structure, then the pattern of
singularities is clear: each additional tour adds a further set of diagonal points. Thus
for example, the three-tour Riemann sheet AAAAAA contains {B, B, C, Cct, D, D" }. The
more difficult challenge is to characterize the surface once we proceed onto Riemann
sheets accessed through the diagonal points. This will chiefly be our task in § 8.

8. The global structure of the Riemann surface

In this section, our goal is to provide a basic list of rules and observations that
characterize the global structure of the Riemann surface for the Stokes wave. As it
turns out, a full description of the surface will prove to be quite difficult, but we hope
to give the reader a taste of the daunting complexity of the singularity structure.

Earlier in figure 5(a), we had presented our notation describing the main crest
singularity A, its mirror image A and also the main diagonal singularities that form the
two V-shaped arrangements, V ={B, B, B, B*, C, C*, C, ct, .. .}. Our numerical results
have indicated that beyond these ‘first diagonals’, further singularities (diagonals
of diagonals) arise once the path of continuation encircles the former set. Newer
diagonals do not share the same symmetry properties as V.

8.1. Symmetry-breaking paths of continuation

Our discussion will centre on numerical results for the Stokes wave with € =0.5. In
figure 10(a), we plot the locations of the singularities discussed earlier in §§6 and 7
using a white node. Contour plots for Re £2 = Re(r — i0) are shown in subfigures
(b,j). We have chosen this solution measure as it is one for which the singularities are
apparent from the shape of the contours. The white nodes in the smaller subfigures
correspond exactly to those in figure 10(a), and the black nodes mark additional
singularities that arise once symmetry is broken in the path of analytic continuation.

This notion of symmetry breaking is a central reason for the difficulty in
establishing the full Riemann surface. Earlier we presented a method of analytic
continuation that was based on formula (4.1). Here, the reflective property of the
equation indicates that if there exists a singularity at f = f*, then there is likely a
singularity at —f* as well. However, this criterion only applies if, by the time the
continuation path reaches —f*, the former f* is still singular on the same Riemann
sheet. This is certainly true for the transition between Riemann sheets & and A,
where singularity A is located on the imaginary axis on both sheets, and hence
induces the creation of the mirror singularity A. However, in general, we must expect
that paths of continuation that encircle a diagonal singularity to break the symmetry
of the Riemann sheet; thus, arguments that depend on reflection will no longer
directly apply.
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8.2. Rules and observations
By now, the first two observations are well known:

(i) On the main sheet &, there is only the single crest singularity A and its periodic
copies, Ay, i=1,2,3,...

(i) Two rotations about any singularity returns the path to its original value;
clockwise and counterclockwise rotations are equivalent.

The first observation is verified in figure 10(b), and in numerous points throughout
this work. The second observation follows from the fact that, as discussed in § 3, the
only possible dominant balance in (3.2) must necessarily yield singularities of square-
root type. We have also made mention of the periodic copies of A, of which A; and
A_y can be seen in the figure. This leads us to:

(iii) Periodic copies of A and A can appear on certain Riemann sheets; when this
occurs, they appear at the points +f; + Z.

Note that while the physical water wave is required to be periodic, there is no
such limitation on the analytic continuation. However it is a consequence of the two
methods of continuation explained in §4 that certain periodic properties may still be
preserved. As shown in figure 10(b), on &, there will be periodic copies of the main
singularity, A, separated by unit lengths. In fact, this can be more easily seen by using
the circular map given by ¢ = exp(—2mif). This maps the lower half-f-plane to the
interior of a unit circle in the t-plane, and all singularities f4 + Z to a single point
t4. By similar logic, the mirror singularity f, will also be accompanied by periodic
copies on certain Riemann sheets, as in figure 10(c).

(iv) By solely encircling the combination AA, diagonal singularities will appear in
pairs, from {B, B, C, C*, D, D", . ..}, with a new type for each orbit of AA. From
the chain of AA orbits, encircling A once further will cause the upper diagonal
singularities {B, B¢, C, C*, D, D", ...} to appear in an analogous fashion.

Thus for example, on sheet AA, singularities {B, B‘} appear. On sheet AAAA,
singularities {B, B*, C, Qe} appear, and so forth. This statement was the focus of §7,
and we also see the behaviour in figure 10(d,g). Adding the additional circling of
A produces the mirror singularities; thus AAA has singularities {B, B‘}, as shown in
figure 10(f).

Indeed there are a plethora of other rules that may derive with the help of the
continuation schemes discussed in §4. However, we will end here with one final
observation — the most vague and open of the ones we have proposed.

(v) Circling a diagonal singularity causes the generation of further singularities on the
new sheet. The locations of these singularities are unpredictable and not subject
to symmetry arguments in the f-plane.

The observation was discussed in § 8.1, and can be seen in figure 10(e,g,k). In such
figures we see that upon circling a diagonal singularity, new singularities may arise
(marked as a dark node). Such singularities arise in a non-symmetric fashion.

9. Conclusion

Using numerical computations of the analytic continuation of the Stokes wave, we
have confirmed the existence of the main crest singularity, as shown by Grant (1973),
Schwartz (1974) and many others. We have also confirmed the existence of its mirror
image, as first conjectured by Tanveer (1991). Further exploring deeper layers of the
Riemann surface reveals a countably infinite number of diagonal singularities.
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10. Discussion

Throughout his numerous correspondences with William Thompson (Lord Kelvin),
Stokes made frequent note of his hesitation that the highest possible wave would
indeed exhibit a crest angle of 120°. However by September 1880, he seemed to have
convinced himself of the theory’s veracity:

You ask if I have done anything more about the greatest possible wave. I
cannot say that I have, at least anything to mention mathematically. For
it is not a very mathematical process taking off my shoes and stockings,
tucking up my trousers as high as I co[u]ld, and wading out into the sea
to get in line with the crests of some small waves that were breaking on a
sandy beach (...) it did seem to me that the waves began to break while
their sides still made only a blunt angle, a good deal less than 90°. I feel
pretty well satisfied that the limiting form is one presenting an edge of
120°. (Stokes 1880c, p. 498)

While Stokes may have been able to reassure himself through direct observations
of physical waves, for us, such interactions are more difficult — not least because the
singularities we study are confined to the complex plane. However, a connection with
the physicality of the problem need not be out of reach: through our construction
and exploration of the Riemann surfaces, we have sought to offer the same sense of
discovery that Stokes had found that day, wading into the sea.

It is furthermore remarkable that, perhaps the simplest possible problem involving
the study of a nonlinear water wave, a topic of study that dates back over a century
and a half, continues to confound us in the present day with new challenges. While we
have attempted to highlight the complexity of the underlying issues, there are naturally
three questions that follow from this work.

(i) What is the complete mathematical description of the Riemann surface for the
Stokes wave? An exhaustive search of the individual Riemann sheets of the surface is
yet to be undertaken. Here, we have sought to describe the patterns and connections
between the branch-cut transitions for the first few Riemann sheets adjacent to the
physical fluid. While this has led to the particular example shown in figure 10, and
our proposed rules and observations of § 8, a more complete description of the full
surface topology will be the subject of forthcoming work.

(i1) What are the asymptotic properties of the singularities in the two limits of
€ — 0 (small waves) and € — 1 (steep waves)? Though the case € — 0, may seem
relatively benign, we still do not understand the various properties of the singularities
in this limit. For example, it seems from figure 9 that the diagonal singularities
tend to infinity along a constant angle as ¢ — 0. Can these angles, as well as
other properties of the Riemann surface be analytically predicted? There are strong
connections between these observations and the occurrence of periodic arrays of
singularities in other studies on nonlinear differential equations (see e.g. Costin &
Costin 2001, Chapman et al. 2013).

Clearly, in the limit € — 1, the cancellation of the leading square-root power cannot
be described using something as trivial as

2~ lag+ai(f —f)' >+ - ] + F)O—al(f+fA)l/2+--- , (10.1)

between the main crest singularity and its mirror image, and with f; — 0. For one
reason, we have established that the mirror singularity is of order 3/2. For another,
encircling both singularities and climbing the AA structure does not return the
continuation to its original value — the topology of the Riemann surface is infinitely
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sheeted along this path. In contrast, two rotations in (10.1) will return the solution to
its original value. Thus, any asymptotic description of the matching region between
outer (away from the singular crest) and inner solutions cannot be composed of
any finite number of square-root sums, as in (10.1). Indeed this was the observation
from a preprint by Lushnikov (2015), who conjectured that an infinite product of
increasingly nested square roots might explain the recombination of the two main
crest singularities to Stokes’ single crest singularity. As noted by the author, such a
functional form would necessarily have additional off-axis singularities. It is intriguing
that we have found such singularities here as well.

The work by Longuet-Higgins & Fox (1977, 1978) studying the ‘almost-highest
wave’ is most relevant, and we hope to undertake a comprehensive study reviewing
the connections between the previous work and our present paper. Problems with
coalescing singularities often reveal challenging asymptotic structures for study
(Chapman et al. 2013; Trinh & Chapman 2015).

(iii) What are the physical and practical consequences of the newfound singularity
structure? Finally, the question most relevant to the practitioner (numerical, theoretical
and experimental) is what we may take away from this study, as it relates to real life
consequences of Stokes wave theory. We had already discussed, in § 1.1, many of the
issues where better understanding of the singularity structure would illuminate. As
many theories on time-dependent instabilities rely upon the interaction of the nearest
singularity to the free surface, the question of how to account for the coalescence
of the (presumed) infinity of singularities as € — 1 seems to be of paramount
importance. In addition, we also highlight intriguing questions on the role of Stokes
wave singularities in the development of capillary ripples riding on steep gravity
waves (cf. Longuet-Higgins 1995). As shown in Trinh & Chapman (2013a,b), it is
expected that the singular limit of small surface tension will present a challenging
route for further study.
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