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The standard analytical approach for studying
steady gravity free-surface waves generated by a
moving body often relies upon a linearization of the
physical geometry, where the body is considered
asymptotically small in one or several of its
dimensions. In this paper, a methodology that avoids
any such geometrical simplification is presented for
the case of steady-state flows at low speeds. The
approach is made possible through a reduction of the
water-wave equations to a complex-valued integral
equation that can be studied using the method of
steepest descents. The main result is a theory that
establishes a correspondence between different
bluff-bodied free-surface flow configurations, with
the topology of the Riemann surface formed by the
steepest descent paths. Then, when a geometrical
feature of the body is modified, a corresponding
change to the Riemann surface is observed, and
the resultant effects to the water waves can be
derived. This visual procedure is demonstrated for
the case of two-dimensional free-surface flow past
a surface-piercing ship and over an angled step
in a channel.

1. Introduction
Let us consider the problem of determining the steady
surface gravity waves generated by a body moving in
a two-dimensional potential fluid. At the free surface,
y = η(x), Bernoulli’s equation requires that

1
2 q2 + gη= const., (1.1)

where q is the fluid speed and g is the gravitational
parameter. The nonlinearity of (1.1) forms the primary
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difficulty of analysis; in order to make any sort of progress, the equation must usually be
linearized. As explained by Tuck [1], this linearization will typically involve making one of two
possible assumptions.

In the first, the relevant flow quantities are expressed as a series expansion in powers of a
geometric parameter such as

δ = body size
depth of submergence

. (1.2)

For instance, one might assume that at leading order, the object is asymptotically thin or
streamlined in one or several of its dimensions, or that the body is submerged at great
depth compared with its dimensions. Then, in the δ→ 0 limit, the solution is linearized about
uniform flow.

However, approximation schemes that are dependent on taking an asymptotic limit of some
geometric parameter can be difficult to justify formally, because the boundary conditions are
typically imposed at approximate locations rather than at exact locations. For example, flow past
a circular cylinder can be approximated by flow past a dipole, but a finite-order approximation
(in powers of the cylinder radius) can never yield a closed streamline around the body (see e.g.
fig. 1 of [1]). Similar examples occur in a variety of geometrically perturbed problems (see e.g.
the discussion on p. 542 of Wexler et al. [2]). Even beyond the inability to satisfy the exact body
conditions, another limitation of such approximations is that little can be said about the flow
around geometrically nonlinear or bluff bodies; this is a crucial limitation for our purposes.

The second linearization of (1.1) is more suitable for developing a theory of waves created by
thick or bluff bodies. In this approach, the relevant small parameter is typically related to the
Froude number, Fr, and introduced in this work as

ε = Fr2 = inertial
gravitational forces

. (1.3)

There has been much recent interest in studying how high-Froude effects modify the standard
Kelvin ship-wave pattern [3,4]. However, while the ε→ ∞ limit forms an interesting regime in its
own right, the hull geometry plays a less vital role in the analysis at leading order (cf. [5]). We shall
instead concentrate on the problem as ε→ 0, where the body is assumed to move at low speeds,
and the free surface is entirely flat at leading order. The great advantage of this approach is that
there is no geometrical restriction placed on the body; thus, the associated boundary conditions
are satisfied exactly to all orders. The challenge, however, is that the limit ε→ 0 is singular, and
the free-surface waves are exponentially small, with amplitudes that scale as e−const./ε . Thus, they
are said to be beyond-all orders of any regular expansion in powers of ε. The inability to detect
the surface waves using standardized methods is known as Ogilvie’s low-Froude paradox [6,7].

In the 50 years following Ogilvie’s work, the low-Froude paradox was eventually resolved
through the combined efforts of many researchers, and a review of the historical progression
can be found in [7,8]. Chapman & Vanden-Broeck [9] were the first, to the best of our knowledge,
to derive the correct leading-order wave solution of the low-Froude problem, and their
approach uses exponential asymptotic techniques of matched asymptotics and Stokes line
smoothing [10,11].

For the particular case of gravity-driven flow, there is a fortuitous simplification of the water-
wave equations that allows the ε→ 0 limit to be studied under a more geometrical framework.
The derivation of this framework is the topic of a companion paper [8]. There it is shown that,
by extending earlier ideas by Tulin [12] and Tuck [13], solutions can be expressed in the form of
a (nearly explicit) integral. Although the study of this integral is not straightforward, additional
simplifications can be made so as to produce an asymptotic approximation of the surface waves
via the method of steepest descents. Although integral approximation techniques in exponential
asymptotics are well known [14–17], the approach in reference [8] had not yet been done for the
study of low-Froude free-surface flows.

While the companion work [8] explains how the approximation procedure is performed for
general wave-body configurations, in this work, we study the intricacies of the method when
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applied to particular concrete flow geometries. In particular, we shall demonstrate how the
framework can be applied for the particular cases of flow past an angled step in a channel and
flow past a surface-piercing obstruction. The main result is a procedure that allows us to directly
relate the geometry of the physical flow to certain Riemann surfaces connected to the analysis.
We first provide a brief review of the main results of the companion paper [8].

2. The reduced water-wave equations
As a preliminary example, consider potential steady free-surface flow past the stern of a
surface-piercing ship, modelled as a two-dimensional semi-infinite body (figure 1). The physical
coordinates are denoted by z = x + iy, and the complex potential is written as w = φ + iψ , for
velocity potential, φ, and streamfunction, ψ . Our task is to solve for the speed, q(φ,ψ), and
streamline angle, θ (φ,ψ), on the free surface, where φ > 0 and ψ = 0. The governing water-wave
equations are reviewed in appendix A, and are given in non-dimensional form by

εq2 dq
dφ

+ sin θ = 0 and log q = 1
π

ˆ 0

−∞
θ (ϕ)
ϕ − φ

dϕ + H θ (φ) on ψ = 0, (2.1)

where we have introduced the Hilbert transform operator for the principal-value integral

H θ (φ) = H [θ ] = 1
π

−
ˆ ∞

0

θ (ϕ)
ϕ − φ

dϕ. (2.2)

The first equation in (2.1) is the differentiated form of Bernoulli’s equation with ε = Fr2 =
U2/(gL) being the square of the Froude number for upstream speed U, gravity g, and geometrical
length scale L. The second is a boundary-integral equation, written so as to split the integral on
the solid body (φ < 0), where θ is assumed to be known, with the Hilbert transform over the free
surface (φ > 0), where θ is unknown. For the surface-piercing configuration, we also specify that
the free surface attaches to the body at a stagnation point, q(0) = 0.

For the semi-infinite ship with the single stern-face of angle πσ in figure 1, the problem is
non-dimensionalized, so that the corner lies at φ = −1. The body is then specified as

θship =
{

0 for φ ∈ (−∞, −1),

πσ for φ ∈ (−1, 0).
(2.3)

The above body shape is then used in (2.1), and the two equations can be numerically solved
using the finite-difference schemes discussed in [18,19]. A typical numerical solution for the case
of a rectangular stern, σ = 1/2, is shown in figure 1a at ε = 1, where we have plotted the physical
free surface height, y(x), obtained by integrating the relation dw/dz = q e−iθ . The speed, q, on the
free surface is shown in figure 1b.

Although the two-dimensional semi-infinite geometry of (2.3) may seem rather idealized,
it presents a canonical model of wave–structure interaction with a variety of numerical and
analytical challenges. These two-dimensional stern hull shapes have been considered in, for
example, the works of [18,20], but similar considerations can be extended to ships with multiple
corners [21], or ships with smooth or bulbous profiles [22].

The global nature of the Hilbert transform presents a major difficulty in solving (2.1). Earlier,
Tuck [13] had proposed the idea that toy models of certain wave–structure problems could be
derived by ignoring or replacing the Hilbert transform, and changing (2.1) to an initial-value
differential equation. In the companion paper [8], such a reduction was shown to be formally
possible in the limit ε→ 0. The argument is as follows.

Let us expand the solution of (2.1) as a truncated regular series expansion and an error term

q =
N−1∑
n=0

εnqn + q̄ and θ =
N−1∑
n=0

εnθn + θ̄ . (2.4)
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Figure 1. Flow past the stern of the rectangular ship (2.3) with σ = 1/2. The surface profile, y(x), in (a) corresponds to a
solution of the full nonlinear equations (2.1) at ε = 1.0 using the numerical scheme of Trinh et al. [18]. The profiles in (b)
correspond to the surface speed, q, as a function of the potential, φ. In this inset, the full solution (shown thick) is compared
with the leading-order approximation, q0, in (2.5) (shown dashed), and a solution of the linear model spanning (A 6) and (A 7)
(shown thin).

It follows from setting ε = 0 in (2.1) that at leading order, θ0 = 0, and the free-surface is entirely
flat. Effectively, the surface has been replaced by a rigid plane, and the solution is known as the
double-body flow. In this case, the leading-order speed is given by

q0 =
(

φ

φ + 1

)σ
. (2.5)

As seen in figure 1b, the leading-order solution fails to capture the wave phenomena. In fact, the
situation is much worse, and it can be argued through the study of higher-order terms in (2.4),
that none of the terms, qn and θn, will contain an oscillatory component at any order.

Let us take q and θ , defined on the free surface, φ > 0, and analytically continue the solutions
to complex values of φ. Relabelling φ �→ w ∈ C, the system (2.1) can be reduced to the following
complex-valued differential equation

ε
dq̄
dw

+
[

dχ
dw

+ ε
dP1

dw

]
q̄ ∼ R(w; Ĥ [θ̄ ]), where Ĥ θ̄ (w) = Ĥ [θ̄ ] =

ˆ ∞

0

θ̄ (ϕ)
ϕ − w

dϕ. (2.6)

The derivation of equation (2.6) is reviewed in appendix A.
In (2.6), we have assumed that w lies in the upper half-plane (an analogous derivation can

be done for the lower half-plane). We have also introduced Ĥ for the complexified Hilbert
transform, which is non-singular for w off the real axis. The two functions, χ and P1, (2.6)
are known, typically in closed form, whereas R may be approximated; these quantities will be
specified in §3 and in appendix A. Integrating the equation, and taking the limit whereby we
return to the physical free surface, w → φ > 0, we obtain the result of

q̄(φ) ∼
[

e−P1(φ)

ε

][ˆ φ

φstart

R(ϕ; Ĥ [θ̄ ])eP1(ϕ) eχ(ϕ)/εdϕ
]

e−χ(φ)/ε . (2.7)

In the example of flow past a surface-piercing ship, we take φstart → 0 in order to account for
condition of a stagnation point, q̄(0) = 0, at the edge of the hull.
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In the limit ε→ 0, the initial contour of ϕ ∈ [φstart,φ] in (2.7) can be deformed along paths of
steepest descent. Once done, an asymptotic expansion of the integral is derived by consideration
of dominant contributions from the endpoints, as well as any relevant saddle or critical points
of the integrand. In reference [8], it is shown that the endpoint contributions lead to a re-
expansion of higher-order algebraic terms from (2.4), whereas the exponentially small water
waves are caused by contributions away from the positive real axis. Therefore, Ĥ [θ̄], which only
depends on the free surface values of θ̄ , can be ignored at leading order. This subtle reduction
process explains why certain reduced wave models may remove or substitute alternatives for the
Hilbert transform.

Let qexp be the exponentially small waves that arise from the integral (2.7) according to the
above process. The free surface will then be approximated by

q ∼ [q0 + εq1 + O(ε2)] + 2Re(qexp), (2.8)

which includes both the wave-free flow (the square-bracketed terms) and the surface waves. We
are required to add both qexp from (2.7) and also its complex conjugate, owing to an analogous
argument for the analytic continuation of (2.6) into the lower half-plane, and subsequent
application of the Schwartz reflection principle. Combining these two contributions then leads
to 2Re(qexp).

We now provide a numerical example. Suppose we return to the differential equation (2.6) and,
having been sufficiently convinced by the above arguments, we ignore the Ĥ [θ̄ ] contributions
to R. Using the initial condition q̄(0) = 0, the values (A 6b) and (A 6c) for χ and P1, and the
approximation (A 7) for R, the differential equation is solved as an initial-value problem. The
result, (2.8), is shown in figure 1b. The agreement with the full nonlinear solution is superb even
at the moderate value of ε = 1. At this value of ε, the approximate wave amplitude in figure 1b
is 1.6 × 10−2 for the full model, and 1.9 × 10−2 for the linear model, and thus, a relative error of
≈ 18%. If ε is decreased to 0.5, the relative error decreases to ≈ 3.6%. In reference [8], a careful
check of numerical versus asymptotic results verifies these claims properly.

In reference [8], the asymptotic approximation of the integral (2.7) is made based on the
general assumption that the initial contour of integration can be deformed for any given body
geometry, and that such a deformation generically includes the key critical points generating the
water waves. In actuality, the topology of the steepest descent paths may be rather complicated.
For example, different body geometries may yield different contributing singularities, or
modifications of the geometry may require routing the descent trajectories onto further Riemann
sheets. The purpose of this work is to explore these issues, and to provide a more detailed study
of the correspondence between a given physical hydrodynamical flow and the topology of the
associated steepest descent paths.

3. Computation of the Riemann surfaces
We now explain how the Riemann surfaces connected to the steepest descent paths are computed.
Integral (2.7) is first re-written as

I(φ) =
ˆ φ

φstart

f (ϕ)eχ(ϕ)/εdϕ, where f (ϕ) = R(ϕ; Ĥ [θ̄ ])eP1(ϕ). (3.1)

The exponential argument, χ , is given by (A 6b) and repeated here as

χ (w) =
ˆ w

w0

ij

q3
0(ϕ)

dϕ. (3.2)

In the definition of χ , we have introduced the sign constant, j. The constant takes the value j = 1
for surface-piercing flows and j = −1 for channel flows. As explained in (A 4), this distinction
is necessary owing to the difference in surface flow direction relative to the solid body. The
function q0 in (3.2) is the double-body solution discussed in §2, and encodes the information of
the geometry. Any choice for the initial point of integration, w0, is valid so long as the integral is
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defined, and different choices are compensated by the numerical pre-factors associated with f (ϕ).
We will discuss specifics of the χ function later.

Returning to (3.1), the contour is initially along the real axis, ϕ ∈ [φstart,φ], but once it is
deformed along the paths of steepest descent, this would yield the general decomposition of

I(φ) ∼ Iendpt(φ) + Iexp. (3.3)

Thus, the integral is approximated by the two endpoint contributions, Iendpt, from ϕ = {φstart,φ},
and further contributions, Iexp, from critical points (saddle points, poles or branch points),
presumed to correspond to the surface waves. Paths of steepest descent lie along level sets of
Im(χ ). Thus, the criteria for determining whether w lies on the steepest descent path from w0 are

Im[χ (w)] = Im[χ (w0)] and Re[χ (w)] ≤ Re[χ (w0)]. (3.4)

The first condition ensures that w is on a path of steepest descent or ascent; the second ensures
that it is, in fact, on a path of steepest descent.

In practice, however, calculating χ (w) for different values of w is not necessarily
straightforward, as depending on the body function, q0, χ may possess a complicated branch
structure. A similar issue was encountered in the development of asymptotic solutions to the
problem of thin-film rupture [23]. In order to explain the terminology for the branch structure, let
us return to the example ship flow of §2. Substituting q0 from (2.5) into (3.2), and choosing the
initial point of integration, w0 = −1, to correspond to the corner of the ship, we have

χ (w) = χ(k1,k2) = i
ˆ w

−1

(
ϕ + 1
ϕ

)3σ
dϕ. (3.5)

To define a single-valued function for the above integral, we must specify the branches and
branch cuts associated with the two critical points at ϕ = Wi ∈ {−1, 0}. Depending on the choice
of integration contour in (3.1), the contour may cross a branch cut where the single-valued
specification of χ in (3.2) encounters a discontinuity. For our purposes, we wish to continue the
trajectory of the specified steepest descent paths of (3.1) beyond such discontinuities. In other
words, when a branch cut is traversed, we will move onto the adjacent Riemann sheet, and
take the values of χ from the next branch. Together, the collection of Riemann sheets forms the
Riemann surface for χ .

Continuing with our ship example in (3.5), let us choose the branch cuts so that each lies along
a ray of constant angle from the respective branch point, w = Wi. Let ki ∈ Z be the winding number
around the point Wi—that is, ki marks the number of rotations associated with a given analytic
continuation around Wi, with positive and negative integers for anticlockwise and clockwise
rotations, respectively. Each distinct branch of χ is then associated with the pair (k1, k2) indicating
the number of revolutions required in order to reach the current branch from the principal branch.
For example, consider the surface-piercing ship with branch points at W1 = −1 (the corner) and
W2 = 0 (the stagnation point). Three illustrative branches are labelled as

χ(0,0), χ(0,1) and χ(0,1)→(1,1). (3.6)

The first, χ(0,0), is the principal branch obtained by integrating (3.5) from ϕ = −1 to ϕ = w without
crossing a branch cut. The second, χ(0,1), is found by integrating from ϕ = −1, then circling the
stagnation point, W2, in the positive sense, and arriving at ϕ = w. The third, χ(0,1)→(1,1), begins
from the χ(0,1) branch, and then performs an additional rotation about the corner, W1. When it may
be ambiguous, we use the arrow notation to clarify the order in which branch cuts are crossed.

A three-dimensional cross section of the Riemann surface can be visualized by plotting
(Re w, Im w, Reχ ), using the values of χ(0,0) and its adjacent sheets. In general, these surfaces will
self-intersect within the graphical representation, but they are otherwise free of discontinuities.
For similar visualizations of Riemann surfaces connected to problems in fluid mechanics, see
the work by Crew & Trinh [24] where the Riemann surfaces associated with travelling waves of
permanent form (Stokes waves) are explained.
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The Riemann surfaces that appear in this paper are graphed from numerical integration of χ
in (3.2) using the trapezoid rule. In such computations, we have carefully defined the locations of
the branch cuts, and implemented a numerical scheme that allows the integration path to switch
smoothly between the individual branch sheets. The coordinate data for the Riemann surfaces in
this paper can be found within the electronic supplementary material.

4. The paths of steepest descent
We are now ready to study the steepest descent paths associated with the integral (3.2). We have
chosen to focus on flow past three representative geometries: a ship’s stern modelled as a semi-
infinite rectangular body in infinite depth in §4a, a rectangular step in a channel in §4b and an
angled step in a channel in §4c. The methods we present can be extended to cover many other
classes of moving bodies, notably those for which a boundary-integral formulation exists [19].

(a) The rectangular ship in infinite depth
Let us return to the case of flow past the semi-infinite rectangular stern first introduced in §2.
The geometry is specified by θship in (2.3) with σ = 1/2, and the leading-order speed is given by
(2.5). Our task is to approximate the integral (3.1), which involves the function χ in (3.5). The
critical points in the w or ϕ-plane include the corner w = −1 and the stagnation point w = 0, and
the branch cuts from both are taken along the positive real axis.

In the integral (3.1), we would like to take the initial point of integration to be the stagnation
point, φstart = 0, so as to use of the boundary condition q̄(0) = 0. However, because the origin is a
degenerate point, it is easier to first consider the descents paths for the integral

I(φ) =
ˆ φ

A
f (ϕ)eχ(ϕ)/εdϕ, (4.1)

where ϕ = A is a small and positive number. In all the geometries considered in this work, it
can be verified that f (ϕ) contains only algebraic dependence on ε, and thus the steepest descent
contours will only depend on χ . Below, we use w interchangeably with ϕ (the dummy variable).

Using the methodology outlined in §3, we generate the Riemann surface associated with χ , and
the result is shown in figure 2. The visualized surface is composed of the three listed branches in
(3.6). In the rectangular ship geometry, the adjacent Riemann sheets arising owing to rotations
about the corner point are untouched by the relevant steepest descent paths. This will not always
be the case for all geometries; in both the examples of a rectangular and angled step in §4b,c, the
steepest descent contours will, indeed, traverse onto adjacent Riemann sheets.

We continue to examine figure 2, but now turn our attention to the planar projection, shown in
grey, where several constant phase curves, Im(χ ) = const., are projected down from the Riemann
surface. The dashed lines are constant phase lines emerging from the corner point, w = −1, with
one set of lines, on the right, forming a homoclinic, and the other, on the left, forming an open
triangular region. Setting w + 1 ∼ reiϑ and Imχ = 0 in (3.5), we find that the homoclinic is formed
by the two local angles, ϑ = ±2π/5, whereas the left triangular region is formed by the two local
angles, ϑ = ±4π/5.

Along the dashed curve emerging at a local angle of ϑ = 2π/5, we have Reχ ≥ 0, which
indicates that the trajectory along this curve lies uphill of the point w = −1 (note that χ in (3.5)
was defined, so that χ = 0 at the corner). In figure 2, two steepest descent trajectories are shown
with thick solid lines. For the trajectory that begins in the interior of the homoclinic, the descent
path forms an arc that tends towards w = 0 in a direction tangential to the negative real axis. For
the trajectory that begins exterior of the homoclinic and to the right of the plane, the path moves
to |w| → ∞ along the dashed curves, marking the triangular region. The dashed curves, called the
Stokes lines, mark the critical curves across which the steepest descent paths change in dramatic
fashion; they are of key importance in what follows.
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this is the main Riemann
sheet, c(0,0), upon which the
physical free surface is located

steepest descent contour
from downstream point

steepest descent contour
from upstream point
(near ship body)

steepest descent path
tends to w = 0 with
Re cÆ –•

Riemann sheet c(0,1)Æ(1,1).
This portion of the Riemann
surface remains in active for
this value of s = 1/2

Stokes line marking the
switching-on of the corner
point contribution. As seen
in (Re w, Im w)-plane

stagnation point w = 0

corner point w = –1

2p/5
p/5

Im(w)
Re(w)

Re(c)

Figure 2. Riemann surface ofχ for the rectangular ship geometry with σ = 1/2 as shown in the (Re w, Im w, Reχ )-plane.
The two critical points are w = Wi = {−1, 0}. The Riemann sheets are labelled χ(k1 ,k2) for the respective winding numbers,
ki . The two thick contours correspond to steepest descent trajectories for an upstream point (near w = 0) and a downstream
point, both on the free surface. The bottomplane shows the projection of curves onto the (Re w, Im w)-plane,with dashed lines
indicating the contour Imχ = 0 from the corner point. The surface is generated from numerical integration of (3.5). Data and
further visualizations of the surface are found in the electronic supplementary material.

(i) Only endpoint contributions

Consider the integral (4.1) with initial and final points, ϕ = A and B, both chosen to lie sufficiently
close to the stagnation point of the ship, and hence within the dashed homoclinic of figure 2.

The steepest descent process is sketched in figure 3a. We see that the contour from ϕ = A is
deformed in an anticlockwise manner and tends to ϕ = 0, where Reχ → −∞. Within this valley,
the contour then unwinds clockwise, with χ increasing until arriving at ϕ = B. Thus, when the
integral, I(φ), is evaluated at φ = B< B∗, where B∗ marks the intersection of the dashed line
with the positive real axis, the result of this process yields two dominant endpoint contributions,
written loosely as

I(φ) ∼ Iendpt, (4.2)

the terms of which can be derived by integrating (4.1) by parts. As shown in [8], this process yields
the higher-order algebraic corrections in (2.4).
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(a) before the Stokes line

A B

anti-Stokes line from stern
corner with local emergence
q = 3p/5 and q = p/5

Stokes line from stern corner
with local emergence q = 2p/5

paths of steepest descent
of this contour will
enter the origin

valley relative
to w = –1

w = –1 w = 0

direction of descent

(b) at the Stokes line

A B1, 2 C

crossing the Stokes line
causes a dramatic change
in the steepest descent path

(c) after the Stokes line

A C

the local contribution
from the corner point
switches on an exponential

Figure 3. Illustration of the steepest descents deformation process for the integral (4.1), as drawn in the (Rew, Im w)-plane
(for dummy integration variable ϕ). The endpoints of the contour are marked as a dark circle, and run from A to B in (a) or A
to C in (b, c). Branch cuts are shown as a wavy line. The open circles indicate the two critical points w = Wi = {−1, 0}. Black
arrows along the thick lines indicate the integration direction, whereas white arrows indicate the local direction of descent.
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Now that we have understood the approximation process, we may freely take A → 0, that
is, take the initial point of integration in (4.1) to the stagnation point. Then, the proper steepest
descent deformation for the contour ϕ ∈ [0, B] involves only the single contour in the upper
half-plane connected to B.

For points sufficiently close to the body of the ship, we conclude that there are no free-surface waves in
the limit ε→ 0 (to this order of exponential accuracy).

(ii) Crossing the Stokes line

The dashed curve in figure 3a is known as the Stokes line, and it marks the critical curve across
which the analytic continuation of the integral, I(φ), switches-on a subdominant contribution. The
intersection of the Stokes line with the original contour along ϕ ∈ [A,φ], is the location across
which the deformation process makes a dramatic topological change, and this occurrence is
known as the Stokes phenomenon [25]. Consider the method of steepest descents applied to an
initial contour in (4.1) beginning at ϕ = A and ending at ϕ = φ = C. The point C is chosen to be
sufficiently far downstream so as to pass the Stokes line; hence, it lies outside of the homoclinic
region. This is sketched in figure 3b. Conceptually, it is easier to split the integration range, so that

I(C) =
(ˆ B1

A
+
ˆ C

B2

)
f (ϕ) eχ(ϕ)/εdϕ, (4.3)

where B1 and B2 are the limiting points just on the interior and exterior of the homoclinic orbit.
The deformed contour is sketched in the figure. The steepest descent contours from ϕ = A and

B1 are the same as before, with both curves unravelling within the dashed homoclinic and then
connected by the valley at ϕ = 0, where χ → −∞. However, for the second integral in (4.3), the
contours from ϕ = B2 and C tend to the valley in the upper left, as |ϕ| → ∞. Because the two
integrals that run alongside the top of the homoclinic orbit will sum to zero, this leaves the final
deformed contour in figure 3c. Thus, in addition to the endpoint contributions (4.2), we have

I(φ) ∼ Iendpt + Iexp = Iendpt + ý
ˆ
ϕ=−1

f (ϕ)eχ(ϕ)/εdϕ. (4.4)

The evaluation of the ý́ integral along the steepest descent path depends only on the local
properties of the integrand near ϕ = −1. This is why we may think of the surface waves as being
generated by the ship’s corner. The analytical form of (4.4) is given in [8].

For points sufficiently far downstream from the body, we conclude that the free-surface waves arise from
switching-on the saddle–point contribution owing to the corner of the ship (the Stokes phenomenon).

(b) The rectangular step in a channel
Consider now the case of channel flow past a step of angle πσ > 0, as illustrated in figure 4a.
The problem is non-dimensionalized, so that in the complex potential plane, w = φ + iψ , the free
surface is along ψ = 0, the channel bottom is along ψ = −π and −∞<φ <∞. In order to develop
the analogous formulae to (2.1), we map the w-plane to the upper half ζ -plane using

ζ = ξ + iη= e−w. (4.5)

This is shown in figure 4b. Within the ζ -plane, the solid boundary lies along ξ ≤ 0, the free
surface along ξ ≥ 0, and downstream infinity corresponds to ζ → 0. Bernoulli’s equation and the
boundary-integral equation are given in (A 2) with j = −1. Further details of this set-up are given
in appendix A.

Having non-dimensionalized with the channel height, we have the freedom to specify the
locations of the stagnation point, ζ = −b, and corner, ζ = −a, with 0< a< b. The body geometry
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1

y = 0

y = –p ps

z-plane

ξ

h

−b −a

z-plane

(a) (b)

Figure 4. Physical z-plane (a) and upper-half ζ -plane (b) for the non-dimensional flow over a step of angleπσ . The flow is
contained within a strap in the complex potential w-plane. The map from the w-plane to the upper-half ζ -plane is given by
ζ = e−w . The points ζ = −b and−a correspond to the stagnation point and corner, respectively.

is then described by the respective angle and speed,

θstep =
{

0 ξ ∈ (−∞, −b) ∪ (−a, 0)

πσ ξ ∈ (−b, −a)
and qs =

(
ξ + b
ξ + a

)σ
=
(

e−φ + b
e−φ + a

)σ
, (4.6)

where the speed, qs, follows from (A 3) and is then used in the boundary-integral equation (A 2b).
This geometry corresponds to a step-up of angle πσ > 0 to the horizontal, and reversing the flow
or allowing a step-down is straightforward. Such step-geometries have been considered by, e.g.
[9,26] and they provide a canonical mathematical model for free surface channel flow. Examples
of works studying other similar flows include [19,27–29].

In what follows, we must take care to transform the integration variables from w to ζ . We will
abuse notation, and instead of writing χ (w) = χ (− log ζ ) ≡ X(ζ ), we write χ (ζ ) for X(ζ ). Using
(4.5) and (4.6) with q0 = qs, the analogous integrals to (3.1) and (3.2) are given by

I(ξ ) =
ˆ ξ

A
f̃ (t)eχ(t)/εdt with χ (ζ ) = −i

ˆ ζ

−a

(
t + a
t + b

)3σ (
−1

t

)
dt, (4.7)

written now for the ζ -plane, and where we have defined f̃ (t) ≡ −f (ϕ)/ζ . The dummy variable is
now t corresponding to integration in the ζ -plane. We have also defined χ , so that χ (−a) = 0,
and this changes only the numerical pre-factors embedded in f̃ . Like the example of the ship, it
is convenient to consider the initial point of integration, t = A, at a finite non-degenerate point
along the free-surface, t ≥ 0. We will eventually let A → ∞ so as to impose the natural boundary
condition that requires uniform flow upstream, or q̄ → 0 as ζ = ξ → ∞.

Consider now the rectangular step and set σ = 1/2 in (4.7). Within the integral for the χ , we
choose both branch cuts from ζ = −b and ζ = −a to lie in the direction of the positive real axis;
owing to the combination of powers, this is equivalent to a single branch cut between the two
points. There is a further logarithmic branch cut that arises from the pole at ζ = 0.

Using the procedure described in §3, we generate the Riemann surface for χ , and plot its
projection into (Re ζ , Im ζ , Reχ )-space in figure 5. Recall the index notation of (3.6). In this
case, the Riemann sheets are denoted by χ(k1,k2,k3) for the winding numbers associated with
ζ = Zi = {−b, −a, 0}. The main sheet, χ(0,0,0), is shown at the very top of the surface in figure 5. Also
shown are two adjacent sheets, χ(0,0,1) and χ(0,0,2), achieved by passing through the logarithmic
branch cut once or twice, respectively.

Examine now the lowest plane of figure 5, where several representative steepest
ascent/descent (or constant-phase) curves have been projected down from the surface. Dashed
constant phase lines emerge from ζ = −a and form two homoclinic orbits, separating the plane
into three regions. The local angle of emergence of these contours can be determined by setting
ζ + a ∼ reiϑ and Imχ = 0 in (4.7). Within the interior of the right-most homoclinic (formed by
angles ϑ = ±π/5), the constant phase paths form closed orbits that become increasingly circular
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this is the main Riemann
sheet, c(0,0,0), upon which
the physical free surface
is located

steepest descent contour
from downstream point.
The curve has just entered
the c(0,2,0), sheet

steepest descent contour
from upstream point

contours form closed orbits
when viewed in flat z-plane

Stokes line marking
the switching-on of
corner point contribution

downstream z = 0
corner z = –a = –1

stagnation z = –b = –2

2p
5

5

Im(z)
Re(z)

Re(c)

p

Figure 5. Riemann surface ofχ for the rectangular step geometry withσ = 1/2, as shown in the (Re ζ , Im ζ , Reχ )-plane.
The three critical points are ζ = Zi = {−b,−a, 0}, where b= 2 and a= 1. The Riemann sheets are labelled χ(k1 ,k2 ,k3) for
the respective winding numbers, ki . The two thick contours correspond to steepest descent trajectories for an upstream and
downstreampoint on the free surface. The lower plane shows the projection of curves onto the (Re ζ , Im ζ )-plane,with dashed
lines indicating the contour Imχ = 0 from ζ = −a. The surface is generated from numerical integration of (4.7). Data and
further visualizations of the surface are found in the electronic supplementary material.

near ζ = 0. The left-most homoclinic is formed by angles ϑ = ±3π/5. Outside both homoclinic
orbits, the constant phase paths also form close contours, approximately in the shape of a figure
eight. The other critical point at ζ = −b, which corresponds to the stagnation point, is not a
saddle–point of the integrand.

(i) Only endpoint contributions

We now seek to deform the initial contour of integration of (4.7) in the case where the endpoints,
t = A and t = ξ = B, are both chosen sufficiently far upstream so as to lie outside the right
homoclinic. The process of approximating the integral using the method of steepest descents is
sketched in figure 6a. In the figure, we use ζ and t interchangeably (the latter is a dummy variable).

Although the steepest descent paths from each individual point, A and B, form a closed orbits
in the plane, each full anticlockwise rotation about the figure eight trajectory is accompanied by
a smaller value of Reχ . This is seen in the three-dimensional plot of figure 5. Thus, the final
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(a) before the Stokes line

B A

anti-Stokes line from corner
with local emergence u = 2p/5 

steepest descent paths
follow closed loops

Stokes line from corner
with local emergence u = p/5 

branch cut

valley relative
to z = –a

direction of descent

(b) at the Stokes line

C B2,1 A

crossing the Stokes line
causes a dramatic change
in the steepest descent path

(c) after the Stokes line

C A

the local contribution
from the corner point
switches on an exponential

z = 0z = –az = –b

Figure 6. Illustration of steepest descent deformations for the rectangular step integral (4.7), as viewed in the (Re ζ , Im ζ )-
plane (for dummy integration variable t). The endpoints of the contour aremarked as a dark circle, and run from A to B in (a), or
A to C in (b, c). Branch cuts are shown as a wavy line. The open circles indicate the three critical points ζ = Zi = {−b,−a, 0}.
Black arrows along the thick lines indicate the integrationdirection,whereaswhite arrows indicate the local directionof descent.
Note that the steepest descent process will continue to deform the curves marked by a double bar past the branch cuts, so that
they eventually form closed orbits along the dotted curves.
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deformed contour begins from A, and follows the trajectory anticlockwise, achieving smaller and
smaller values of Reχ . In order to connect to the figure-eight contour joined to B, the connection
is made within the valley where Reχ → −∞. Once done, the contour unwinds in a clockwise
direction, and finally joins with B. Predictably, the result of this process is (4.2), and thus I is
approximated by the two endpoint contributions. This yields the regular asymptotic expansion
of the solution.

Once we have understood this deformation process, it is simple to take the initial point A →
∞, that is, to be upstream infinity. We require the physical wave problem to impose a radiation
condition such that the flow is uniform upstream and consequently, the only contribution to the
integral at leading order is from an expansion about the point B.

For points sufficiently far upstream of the step, we conclude that there are no free-surface waves in the
ε→ 0 limit.

(ii) Crossing the Stokes line

Now consider the deformation process when the initial contour of integration of (4.7) between
t = A and ξ = t = C is chosen, so that C lies sufficiently far downstream and hence within the
right-most homoclinic orbit. This is shown in figure 6b. We split the integration range in an
analogous manner to (4.3), with points t = B1 and B2, chosen to lie just on the exterior and
interior, respectively, of the homoclinic orbit. The critical dividing curve (the Stokes line), shown
dash-dotted in the figure 6 is the constant phase line from the step corner, t = −a.

The steepest descent process then proceeds similarly as for the case of the rectangular ship:
endpoint contributions are obtained from A and C, and a saddle–point contribution is obtained
from the corner of the step. Unlike the steepest descent paths for the ship, which tend towards
either t = 0 or t = ∞, the steepest descent paths for the rectangular step form closed orbits, with
each rotation diminishing the value of the integrand. This is shown most clearly in the three-
dimensional surface of figure 5.

For points sufficiently far downstream from the rectangular step, we conclude that the free-surface
waves arise from switching-on the saddle–point contribution owing to the corner of the step (the Stokes
phenomenon).

(c) The angled step in a channel
In both the rectangular ship and rectangular step, we have shown how the intersection of a single
Stokes line with the free-surface may account for the production of water waves. In more exotic
geometries, multiple points in the body may produce multiple relevant Stokes lines.

Let us take, for instance, a step inclined at a shallow angle of πσ = π/10 to the horizontal.
For this example, both ζ = −a and ζ = −b in (4.7) produce relevant Stokes lines that intersect the
free surface. The Riemann surface for χ is shown in figure 7, and the picture reveals remarkable
complexity, even for this moderately simple geometry. In contrast to the simpler rectangular step,
steepest descent contours now travel past the branch cut associated with ζ = −b, and move onto
the sheet χ(−1,0,0).

The steepest descent process will go through three possible configurations, depending on the
extent in which ξ in (4.7) lies downstream of the obstruction. If ξ has not yet passed the first
Stokes line from the corner, ζ = −a, then only endpoint contributions are derived, and there are
no waves in the limit ε→ 0. Once ξ passes the first Stokes line intersection from the corner, a single
free-surface wave is switched on. Then, once ξ passes the second Stokes line, a second wave is
switched on. Thus, for this, ξ chosen sufficiently far downstream, (4.4) is approximated as

I(ξ ) ∼ Iendpt + Iexp, stag + Iexp, corner = Iendpt +
(

ý
ˆ

t=−b
+ý
ˆ

t=−a

)
f̃ (t)eχ(t)/εdt, (4.8)

where Iendpt, Iexp,stag and Iexp,corner denote local contributions near the endpoints, stagnation point
and corner point, respectively. The analytical forms of these terms follow from [8]. Note from (2.7)
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that the wave amplitudes are proportional to e−Reχ/ε . Examination of the relative heights of Reχ
in figure 7 then confirms that the free-surface waves generated by t = −a (the stagnation point)
are exponentially subdominant to those generated by t = −b (the corner).

5. Discussion
The work in this paper was driven by two principal motivations.

The first motivation was to return to the work of Tulin [12] and Tuck [13,30], both of whom
had proposed the reduced models for the study of free-surface flows with moving bodies. Their
models shared common elements: for example, both authors had proposed a simplification of
the Hilbert transform, and both emphasized the importance of analytic continuation of the real
flow variables into the complex plane. However, the models were also incomplete, and thus the
search for a complete model led to the companion work [8]. In this latter work, a systematic
reduction of the water-wave equations demonstrates why certain simplifications can be applied
in the low-Froude limit. There, the analysis depends on a general steepest descent argument,
attributing surface waves to saddle–point contributions. Despite the relative simplicity of such
arguments, the actual deformation process can be quite non-trivial. In this paper, our objective
was to demonstrate how this steepest descent analysis is performed on concrete flow problems.

Our second motivation was to provide a powerful and visual methodology for the study
of wave–structure interactions. This method establishes a correspondence between flow in the
physical plane, with the topology of certain Riemann surfaces containing the paths of steepest
descent. The theory is geometrically nonlinear and makes no assumption on the dimensions of the
perturbing body; as explained in Introduction, such theories provide powerful tools for studying
bluff-bodied interactions.

Is it possible to consider other problems where a similar visual methodology is developed? We are
equally driven by the need to better understand free-surface waves produced by flow over
nonlinear geometries under the effects of both gravity and surface tension. It is well known that
in the case of gravity–capillary flows, the equivalent exponential asymptotics is a great deal more
complicated [31,32]. More generally, the study of time-dependent or multi-dimensional problems
using exponential asymptotics continues to pose significant challenges [33–36], particularly for
the case of nonlinear phenomena.

What other geometries can be studied using this approach? The reader may remark that, in reality,
ships or channel topographies may not be piecewise-linear in shape as they are considered here.
In our work, the generation of waves is attributed to critical points in the geometry (corners or
stagnation points), but surely a smooth object will still create a wave pattern! In fact, our analysis
does not stipulate that the body must contain singularities par se, but rather that the analytic
continuation of q and θ must do so.

Consider, for example, the replacement of the bottom topography in figure 4 by any streamline
of the flow above the step. The free-surface waves must necessarily remain the same and the
analysis by the method of steepest descents must still apply as the (now-hidden) complex
singularities of the step remain in place. Hence, there is no contradiction. Recent developments
of powerful conformal mapping techniques for potential flow problems with multiply-connected
regions also suggest the intriguing possibility of studying free-surface flows of a much wider class
of problems (see e.g. work by Crowdy [37]). Finally, we note that our work here also suggests the
possibility of studying flows past bodies with singularities weaker than the branch points found
in the ship and step flows. In a forthcoming paper, a theory will be presented for flows past bodies
with singularities in the curvature, rather than the angle.
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Appendix A. Governing equations
The general framework for the study of steady irrotational two-dimensional free-surface waves
past a moving body is presented in the companion paper [8], and we also refer readers to the
textbook by Vanden-Broeck [19] for a more extensive review. Here, we summarize the basic
equations.

We begin with a set-up of the three relevant coordinate systems. First, the physical plane with
z = x + iy is chosen, so that the body, which is moving at dimensional speed U, is fixed in a
travelling frame of reference. Second, in the complex potential plane with w = φ + iψ , the free
surface is assumed to lie at ψ = 0 and the fluid region in ψ < 0. In the case of the semi-infinite
surface-piercing flow, the body lies on φ < 0 and the free-surface on φ > 0, and a stagnation point
attachment is assumed at φ = 0. For channel flow, the fluid is confined within a finite strip, say
−π ≤ψ ≤ 0, with −∞<φ <∞. The non-dimensional depth of the strip is chosen to be π for
convenience.

The third coordinate system is required only for the case of channel flow. Here, an additional
mapping,

ζ = ξ + iη= e−w, (A 1)

brings the fluid region to the upper half-ζ -plane. The channel bottom now lies on ξ < 0, and the
free surface on ξ > 0. For consistency of notation for the case of surface-piercing flows, we also
consider the lower half-ζ -plane, using the identity map ζ = w. The relevant coordinate systems
are shown in figures 1 (for the ship) and 4 (for the step).

A boundary-integral formulation of the potential flow equations yields the following system
of equations for q and θ along the free surface:

εq2 d q
dφ

+ sin θ = 0 (A 2a)

and

log q = j
π

−
ˆ ∞

0

θ (ξ ′)
ξ ′ − ξ

dξ ′ = log qs + jH [θ ](ξ ). (A 2b)

The first, (A 2a), corresponds to Bernoulli’s equation, and imposes a constant pressure
condition on the surface. The second, (A 2b), involves a Cauchy principal value integral, and is
equivalent to the imposition of Laplace’s equation in the fluid region; it thus provides a second
relationship between q and θ that closes the system. In equation (A 2b), we have split the integral
between the negative real axis (the body) and the positive real axis (the free surface), and defined
the body function qs and the Hilbert transform operator H according to

log qs = j
π

ˆ 0

−∞
θ (ξ ′)
ξ ′ − ξ

dξ ′ and H [θ ](ξ ) = 1
π

−
ˆ ∞

0

θ (ξ ′)
ξ ′ − ξ

dξ ′. (A 3 a,b)

Above, we furthermore introduce the sign function

j =
{

1 for surface-piercing flow,

−1 for channel flow,
(A 4)

which accounts for the fact that, in the surface-piercing geometry, the in-fluid-region lies to the
right of the free-surface for increasing ξ , but to the left for channel flows.

A given body geometry can be specified by providing the values of θ over ξ < 0. Then,
by evaluating the integral (A 3a), a body function qs is obtained that encodes the appropriate
geometry. Note that when ε = 0, θ = 0 from (A 2a), and thus q = qs. This is the leading-order
solution of a perturbative expansion q = q0 + εq1 + · · · and thus, q0 = qs.
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(a) Reduction of water wave equations to integral form
We also summarize the main reduction of the water wave equations (A 2) to the integral form.
The full details of this reduction can be found in [8].

The first step is to analytically continue the free surface quantities q(φ,ψ = 0) and θ (φ,ψ = 0)
into the complex φ (or ξ plane). We thus set φ �→ φr + iφc and ξ �→ ξr + iξc. Owing to the
correspondence between the (physical) complex velocity w = φ + iψ (with φ,ψ ∈ R) and the new
complexified φ, we can relabel the analytic continuations to use w, with a similar relabelling for
ζ . Thus, we write q(φ,ψ = 0) �→ q(w) and θ (φ,ψ = 0) �→ θ (w). This step of analytic continuation is
explained in more detail in [21,38], and the reader is also encouraged to see the visualization in
fig. 2 of Trinh & Chapman [32]. Under this analytic continuation, the boundary-integral equation
(A 2b) becomes

log q + ijθ = log qs + jĤ [θ ], where Ĥ [θ ](ζ ) = 1
π

ˆ ∞

0

θ (ξ ′)
ξ ′ − ζ

dξ ′, (A 5)

for analytic continuation into the upper half-w or ζ -plane.
The solutions, q and θ , are then expressed in terms of a regular series expansion with an error

term, i.e. q = qr + q̄, θ = θr + θ̄ as in (2.4). Note that the leading-order q0 is given by qs in (A 3a)
and θ0 = 0, known as the rigid-body flow. The combination of Bernoulli’s equation (A 2a) and the
boundary-integral equation (A 5) gives the result of reference [8]

Result A.1 (reduced integrodifferential model). Linearizing the water wave equations
about a regular series expansion truncated at N terms gives the following integrodifferential
equation for the perturbation,

εq̄′ + [χ ′(w) + εP′
1(w) + O(ε2)]q̄ = R(w; Ĥ [θ̄]) + O(θ̄2, q̄2), (A 6a)

where

χ (w) =
ˆ w

w0

ij

q3
0(ϕ)

dϕ, (A 6b)

e−P1(w) = q2
0(w∗)Q(w) =

[
Λ

q2
0(w∗)

q2
0(w)

]
exp

(
3ij
ˆ w

w∗

q1(ϕ)

q4
0(ϕ)

dϕ

)
(A 6c)

and R(w; Ĥ [θ̄ ]) = −Ebern − ijEint
cos θr

q2
r

+ iĤ [θ̄ ]
cos θr

q2
r

, (A 6d)

and the error term, Ebern, represents the error in Bernoulli’s equation, and is given by

Ebern = εq′
r + sin θr

q2
r

. (A 6e)

and the error term, Eint, in the integral equation is given by

Eint = log qr + ijθr − (log q0 − jĤ [θr]). (A 6f )

The initial point of integration, w0, in (A 6b) is typically chosen at an (integrable) singularity of
q0, given by (A 3a). The point of integration, w∗, can be chosen anywhere the integral in (A 6c) is
defined, and only changes the constant of integration, Λ.

The solution of the first-order differential equation (A 6a) can then be written as the integral in
(2.7). The initial point of integration is taken so as to satisfy the boundary or radiation conditions.
For the case of the ship (2.5), we set φstart = 0 (for the stagnation point), whereas for the case of
the step, we set φstart = −∞ (for a wave-free upstream flow).

As discussed in reference [8], different choices for R can be used in order to obtain different
approximations to the waves. A particularly convenient and often very accurate choice is the
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two-term approximation,

R(w; Ĥ [θ̄ ]) ∼ −ε2

(
−5ijq2

1

2q4
0

+ q′
1 + 2i

Ĥ [θ1]q1

q3
0

)
, (A 7)

which was used to illustrate the numerical example of figure 1. A comparison of different choices
for R is presented in table 2 of Trinh [8].

References
1. Tuck EO. 1964 A systematic asymptotic expansion procedure for slender ships. J. Ship Res. 8,

639–668.
2. Wexler JS, Trinh PH, Berthet H, Quennouz N, du Roure O, Huppert HE, Linder A, Stone HA.

2013 Bending of elastic fibres in viscous flows: the influence of confinement. J. Fluid Mech. 720,
517–544. (doi:10.1017/jfm.2013.49)

3. Darmon A, Benzaquen M, Raphaël E. 2014 Kelvin wake pattern at large Froude numbers.
J. Fluid Mech. 738, R3. (doi:10.1017/jfm.2013.607)

4. Pethiyagoda R, McCue SW, Moroney TJ. 2014 What is the apparent angle of a Kelvin ship
wave pattern? J. Fluid Mech. 758, 468–485. (doi:10.1017/jfm.2014.530)

5. Vanden-Broeck J-M. 1980 Nonlinear stern waves. J. Fluid Mech. 96, 603–611. (doi:10.1017/
S0022112080002273)

6. Ogilvie TF. 1968 Wave resistance: the low speed limit. Technical report 002, Michigan
University, Ann Arbor, MI.

7. Tulin MP. 2005 Reminiscences and reflections: ship waves, 1950–2000. J. Ship Res. 49, 238–246.
8. Trinh PH. 2016 On reduced models for gravity waves generated by moving bodies. J. Fluid

Mech. (http://arxiv.org/abs/1510.06647)
9. Chapman SJ, Vanden-Broeck J-M. 2006 Exponential asymptotics and gravity waves. J. Fluid

Mech. 567, 299–326. (doi:10.1017/S0022112006002394)
10. Olde Daalhuis AB, Chapman SJ, King JR, Ockendon JR, Tew RH. 1995 Stokes phenomenon

and matched asymptotic expansions. SIAM J. Appl. Math. 55, 1469–1483. (doi:10.1137/
S0036139994261769)

11. Chapman SJ, King JR, Adams KL. 1998 Exponential asymptotics and Stokes lines in
nonlinear ordinary differential equations. Proc. R. Soc. Lond. A 454, 2733–2755. (doi:10.1098/
rspa.1998.0278)

12. Tulin MP. 1983 An exact theory of gravity wave generation by moving bodies, its
approximation and its implications. In Proc. 14th Symp. on Naval Hydrodynamics, Ann Arbor,
Michigan, 23–27 August 1982, pp. 19–51. National Academy Press.

13. Tuck EO. 1991 Waveless solutions of wave equations. In Proc. 6th Int. Workshop on Water Waves
and Floating Bodies. Wood’s Hole, MA: MIT Press.

14. Costin O. 2008 Asymptotics and Borel summability, vol. 141. Boca Raton, FL: Chapman &
Hall/CRC.

15. Grimshaw R. 2010 Exponential asymptotics and generalized solitary waves. In Asymptotic
methods in fluid mechanics: survey and recent advances, pp. 71–120. New York, NY: Springer.

16. Berry M. 1991 Asymptotics, superasymptotics, hyperasymptotics. . . In Asymptotics beyond all
orders (ed. H Segur), pp. 1–14. Berlin, Germany: Springer.

17. Boyd JP. 1999 The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series.
Acta Appl. Math. 56, 1–98. (doi:10.1023/A:1006145903624)

18. Trinh PH, Chapman SJ, Vanden-Broeck J-M. 2011 Do waveless ships exist? Results for single-
cornered hulls. J. Fluid Mech. 685, 413–439. (doi:10.1017/jfm.2011.325)

19. Vanden-Broeck J-M. 2010 Gravity-capillary free-surface flows. Cambridge, UK: Cambridge
University Press.

20. Vanden-Broeck J-M, Schwartz LW, Tuck EO. 1978 Divergent low-Froude-number series
expansion of nonlinear free-surface flow problems. Proc. R. Soc. Lond. A 361, 207–224.
(doi:10.1098/rspa.1978.0099)

21. Trinh PH, Chapman SJ. 2014 The wake of a two-dimensional ship in the low-speed limit:
results for multi-cornered hulls. J. Fluid Mech. 741, 492–513. (doi:10.1017/jfm.2013.589)

22. Farrow DE, Tuck EO. 1995 Further studies of stern wavemaking. J. Austral. Math. Soc. B 36,
424–437. (doi:10.1017/S0334270000007475)

 on July 13, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1017/jfm.2013.49
http://dx.doi.org/doi:10.1017/jfm.2013.607
http://dx.doi.org/doi:10.1017/jfm.2014.530
http://dx.doi.org/doi:10.1017/S0022112080002273
http://dx.doi.org/doi:10.1017/S0022112080002273
http://arxiv.org/abs/1510.06647
http://dx.doi.org/doi:10.1017/S0022112006002394
http://dx.doi.org/doi:10.1137/S0036139994261769
http://dx.doi.org/doi:10.1137/S0036139994261769
http://dx.doi.org/doi:10.1098/rspa.1998.0278
http://dx.doi.org/doi:10.1098/rspa.1998.0278
http://dx.doi.org/doi:10.1023/A:1006145903624
http://dx.doi.org/doi:10.1017/jfm.2011.325
http://dx.doi.org/doi:10.1098/rspa.1978.0099
http://dx.doi.org/doi:10.1017/jfm.2013.589
http://dx.doi.org/doi:10.1017/S0334270000007475
http://rspa.royalsocietypublishing.org/


20

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150833

...................................................

23. Chapman SJ, Trinh PH, Witelski TP. 2013 Exponential asymptotics for thin film rupture. SIAM
J. Appl. Math. 73, 232–253. (doi:10.1137/120872012)

24. Crew SC, Trinh PH. 2016 New singularities for Stokes waves. J. Fluid Mech. 798, 256–283.
(doi:10.1017/jfm.2016.309)

25. Trinh PH. 2010 Exponential asymptotics and Stokes line smoothing for generalized solitary
waves. In Asymptotic methods in fluid mechanics: survey and recent advances (ed. H. Steinrück),
pp. 121–126. New York, NY: Springer.

26. King AC, Bloor MIG. 1987 Free-surface flow over a step. J. Fluid Mech. 182, 193–208.
(doi:10.1017/S0022112087002301)

27. Forbes LK, Schwartz LW. 1982 Free-surface flow over a semicircular obstruction. J. Fluid Mech.
114, 299–314. (doi:10.1017/S0022112082000160)

28. Binder BJ, Blyth MG, McCue SW. 2013 Free-surface flow past arbitrary topography and
an inverse approach for wave-free solutions. IMA J. Appl. Math. 78, 685–696. (doi:10.1093/
imamat/hxt015)

29. Lustri CJ, McCue SW, Binder BJ. 2012 Free surface flow past topography: a beyond-all-orders
approach. Eur. J. Appl. Math. 1, 1–27. (doi:10.5923/j.am.20110101.01)

30. Tuck EO. 1991 Ship-hydrodynamic free-surface problems without waves. J. Ship Res. 35,
277–287.

31. Trinh PH, Chapman SJ. 2013 New gravity–capillary waves at low speeds. Part 1: linear theory.
J. Fluid Mech. 724, 367–391. (doi:10.1017/jfm.2013.110)

32. Trinh PH, Chapman SJ. 2013 New gravity–capillary waves at low speeds. Part 2: nonlinear
theory. J. Fluid Mech. 724, 392–424. (doi:10.1017/jfm.2013.129)

33. Lustri CJ, Chapman SJ. 2014 Unsteady flow over a submerged source with low Froude
number. Eur. J. Appl. Math. 25, 655–680. (doi:10.1017/S0956792514000217)

34. Howls CJ. 1997 Hyperasymptotics for multidimensional integrals, exact remainder terms
and the global connection problem. Proc. R. Soc. Lond. A 453, 2271–2294. (doi:10.1098/rspa.
1997.0122)

35. Chapman SJ, Mortimer DB. 2005 Exponential asymptotics and Stokes lines in a partial
differential equation. Proc. R. Soc. A 461, 2385–2421. (doi:10.1098/rspa.2005.1475)

36. GL Body, JR King, RH Tew. 2005 Exponential asymptotics of a fifth-order partial differential
equation. Eur. J. Appl. Math. 16, 647–681. (doi:10.1017/S0956792505006224)

37. Crowdy D. 2012 Conformal slit maps in applied mathematics. ANZIAM J. 53, 171–189.
(doi:10.1017/S1446181112000119)

38. Trinh PH, Chapman SJ. 2015 Exponential asymptotics and problems with coalescing
singularities. Nonlinearity 28, 1229–1256. (doi:10.1088/0951-7715/28/5/1229)

 on July 13, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1137/120872012
http://dx.doi.org/doi:10.1017/jfm.2016.309
http://dx.doi.org/doi:10.1017/S0022112087002301
http://dx.doi.org/doi:10.1017/S0022112082000160
http://dx.doi.org/doi:10.1093/imamat/hxt015
http://dx.doi.org/doi:10.1093/imamat/hxt015
http://dx.doi.org/doi:10.5923/j.am.20110101.01
http://dx.doi.org/doi:10.1017/jfm.2013.110
http://dx.doi.org/doi:10.1017/jfm.2013.129
http://dx.doi.org/doi:10.1017/S0956792514000217
http://dx.doi.org/doi:10.1098/rspa.1997.0122
http://dx.doi.org/doi:10.1098/rspa.1997.0122
http://dx.doi.org/doi:10.1098/rspa.2005.1475
http://dx.doi.org/doi:10.1017/S0956792505006224
http://dx.doi.org/doi:10.1017/S1446181112000119
http://dx.doi.org/doi:10.1088/0951-7715/28/5/1229
http://rspa.royalsocietypublishing.org/

	Introduction
	The reduced water-wave equations
	Computation of the Riemann surfaces
	The paths of steepest descent
	The rectangular ship in infinite depth
	The rectangular step in a channel
	The angled step in a channel

	Discussion
	Reduction of water wave equations to integral form

	References

